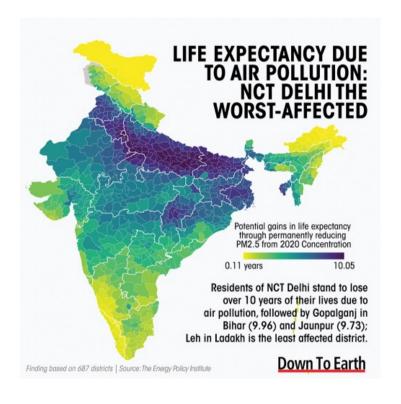

Aerosol Remote Sensing from Polarimetric Measurements

Otto Hasekamp

Aerosol Effects on Climate



SRON

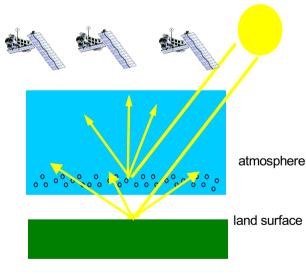
Aerosols and Air Quality

SRON

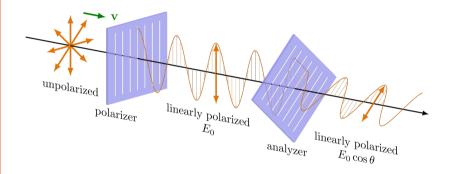
What Aerosol properties do we need to measure?

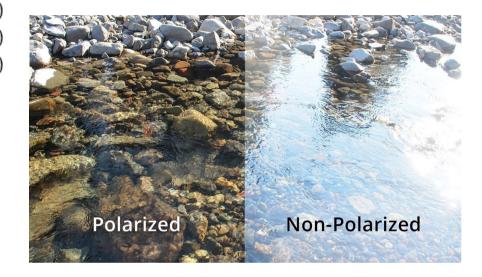
- Optical properties such as Aerosol Optical Depth (AOD) and Single Scattering Albedo (SSA): Needed to quantify aerosol-radiation interactions (climate) but also serve as proxy for aerosol amount and composition (climate & air quality).
- Aerosol size distribution: Needed for air quality research (fine particles are most harmful and also for aerosol cloud interactions.
- Composition: Needed to quantify emission sources and aerosol water uptake (climate and air quality). Refractive index can be used to distinguish between the most important aerosol components: Dust, Sea Salt, Sulfates/Nitrates, Black Carbon, Brown Carbon, aerosol water.

Measurement Principle

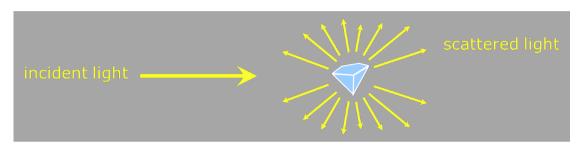


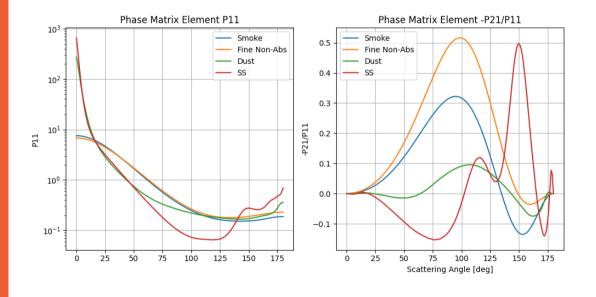
Aerosol properties can be derived from measurements of scattered light

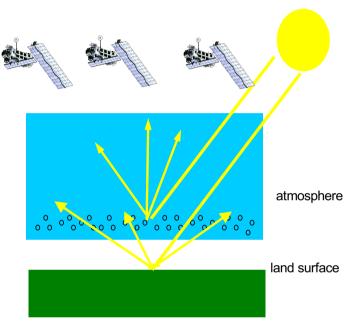




$$I = I(0^\circ) + I(90^\circ)$$
 (total intensity)
 $Q = I(0^\circ) - I(90^\circ)$ (horizontal vs vertical polarization)
 $U = I(45^\circ) - I(135^\circ)$ (+45° vs -45° linear polarization)
 $V = I_{\rm RCP} - I_{\rm LCP}$ (right vs left circular polarization)



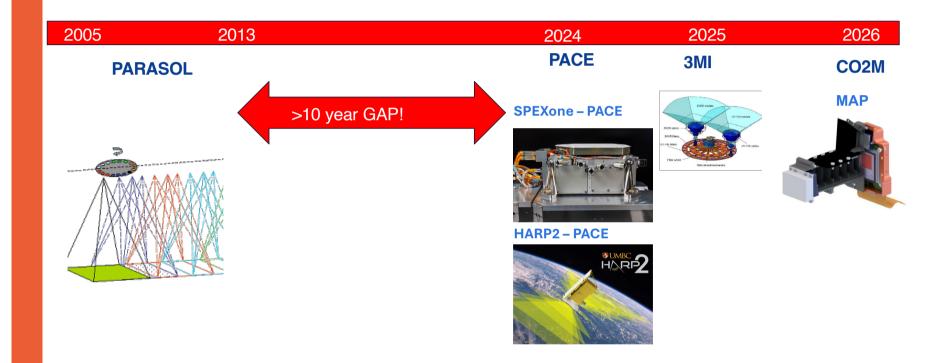

Degree of Linear Polarization (DoLP): $DoLP = \frac{I}{\sqrt{Q^2 + U^2}}$



How to Best Measure Aerosol Properties with a satellite?

The angular and spectral dependence of intensity and degree of polarization depend on the particle on which it is scattered.

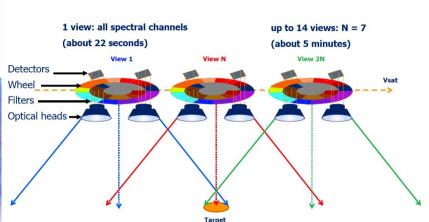
$$egin{bmatrix} I_s \ Q_s \ U_s \ V_s \end{bmatrix} = egin{bmatrix} P_{11} & P_{12} & 0 & 0 \ P_{21} & P_{22} & 0 & 0 \ 0 & 0 & P_{33} & P_{34} \ 0 & 0 & P_{43} & P_{44} \end{bmatrix} egin{bmatrix} I_i \ Q_i \ U_i \ V_i \end{bmatrix}$$


SRON

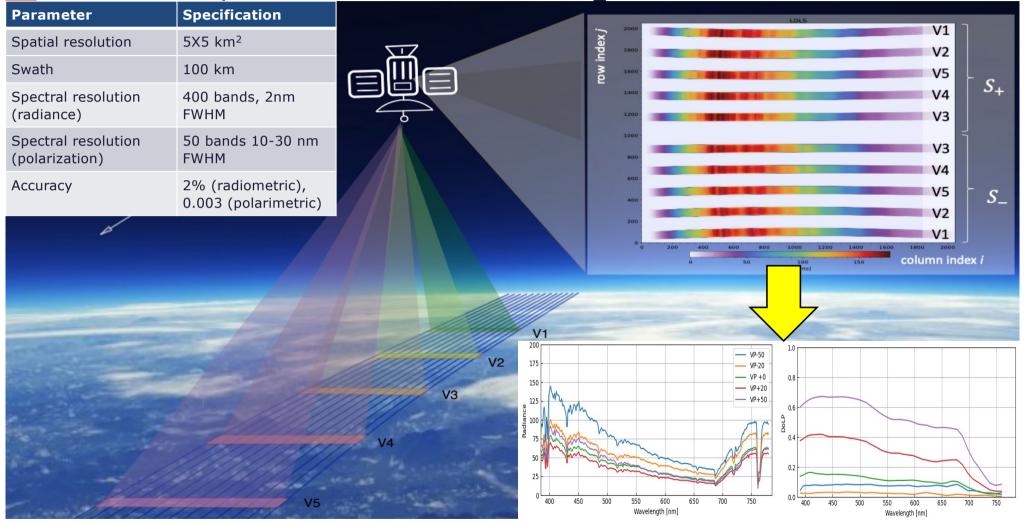
Typical Polarization Features from Aerosol Scattering

- Fine mode aerosols (typical effective radius between 0.10-0.2 micron):
 - Strong polarization peak near 90-100° scattering angle → Rayleigh like scattering mixed with larger particles.
 - Peak shifts to larger scattering angles when particle size increases.
 - Absorption slightly reduces the peak
- Mineral Dust (Coarse non spherical particles, typically modeled as ellipsoids).
 - Weak polarization with broad maximum for scattering angle 100-120°.
- Sea salt (Hydrated spherical particles with refractive index close to water)
 - Rainbow-like features with strong polarization near 150°.
 - When sea salt becomes dryer (smaller particles, larger refractive index) weaker polarization with peak shifted toward larger scattering angles, and broader (negative) maximum between scattering angles 120-130°.

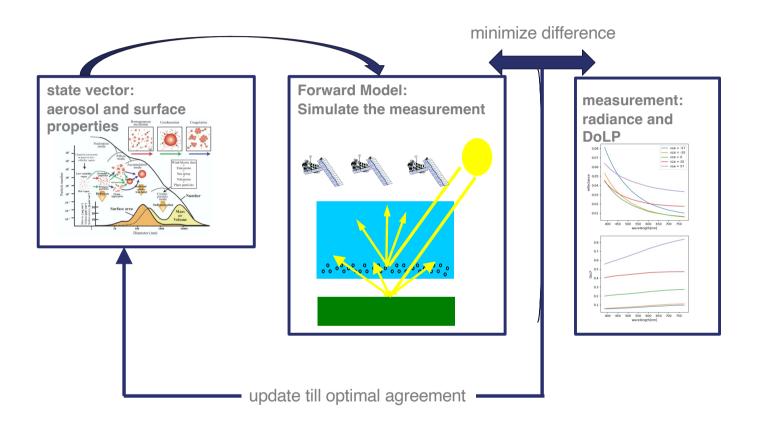
Polarimeters in Space



3MI: Launch August 2025


natural light polarized light

	3MI							
	Channel	Bandwidth (nm)						
	3MI-2b	400-420						
	3MI-3	433-453						
	3MI-4	480-500						
	3MI-5	545-565						
	3MI-6	660-680						
Ĭ.	3MI -7	758-768						
	3MI -8	745-785						
10	3MI -9	845-885						
	3MI-9a	900-920						
M	3MI -10	1350-1390						
	3MI -11	1630-1670						
1	3MI -12	2110-2150						


SPEXone/PACE: Launch February 2024

Deriving Aerosol Properties from Polarimetric Measurements

Overview of Retrieval Procedure

RemoTAP and GRASP

✓ RemoTAP SRON algorithm

(Hasekamp et al., 2011; 2019; Fu et al., AMT, 2018;2020;2025; Lu et al., Frontiers, 2022)
Remote Sensing of Trace Gas and Aerosol Products

✓ **GRASP** algorithm

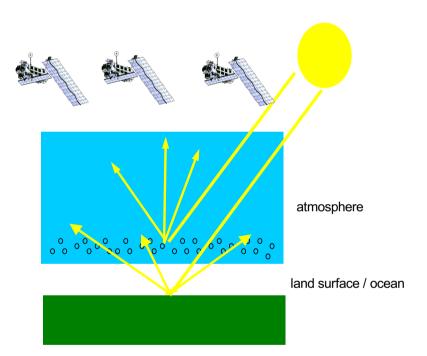
(Dubovik et al., 2011, 2014, 2021; Chen et al., ESD, 2020)

Generalized Retrieval of Atmosphere and Surface Properties

Other algorithms (Applied to airborne data): Waquet et al. (2009), Xu et al. (2017), Stamnes et al. (2018), Zhai et al. (2018), Gao et al. (2019)

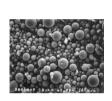
Forward Model

Optical properties:


Mie/T-matrix /Geometrical Optics table from Dubovik et al. (2006) for mixture of spheroids and spheres.

Surface Reflection:

Take into account the multi-directional and polarization aspects of surface reflection. Over land, this is done using semi-empirical models. Over ocean, the model takes into account reflection by the rough ocean surface (depending on wind-speed) and transport of radiation in the ocean body.

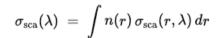

Radiative Transfer:

Having the optical properties of atmosphere and surface, we can model the transport of radiation in the atmosphere to simulate the satellite measurement of radiance and polarization at the top-of-atmosphere.

Forward Model: Aerosol Properties to Optical Properties

Mie calculations per particle radius bin

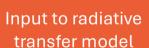
 $\begin{bmatrix} I_s \\ Q_s \\ U_s \\ V_s \end{bmatrix} = \begin{bmatrix} P_{11} & P_{12} & 0 & 0 \\ P_{21} & P_{22} & 0 & 0 \\ 0 & 0 & P_{33} & P_{34} \\ 0 & 0 & P_{43} & P_{44} \end{bmatrix} \begin{bmatrix} I_i \\ Q_i \\ U_i \\ V_i \end{bmatrix}$


Microphysical properties (size, refractive index, shape)

spheroids

T-Matrix / Geometric
Optics calculation per
radius bin

scattering/absorption cross-section, Phase Matrix



$$\sigma_{
m abs}(\lambda) \ = \ \int n(r) \, \sigma_{
m abs}(r,\lambda) \, dr$$

$$au(\lambda) \ = \ \int igl(\sigma_{
m sca}(igr) + \sigma_{
m abs}(z,\lambda)igr) \, dz$$


$$\omega_0(\lambda) \ = \ rac{\sigma_{
m sca}(\lambda)}{\sigma_{
m sca}(\lambda) + \sigma_{
m abs}(\lambda)}$$

Integrate over size distribution

Forward Model: Ocean Reflection Matrix

R_{frn}: Fresnel reflection matrix on a rough ocean surface. Cox-Munk model, wind speed as free parameter (optional in 2 directions).

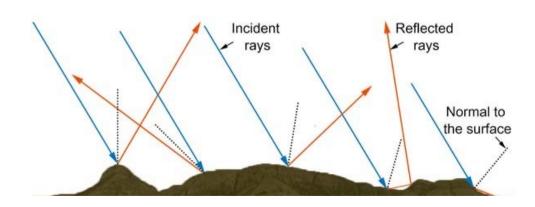
R_{ul}: Ocean body contribution. Bio-optical model of Chowdhary et al. for case 1 waters. Chl_a concentration as free parameter. RT insider ocean body replaced by NN (Fan et al., 2019).

 $A(\lambda)$: Lambertian albedo term (separately fitted for each wavelength) to account for foam and to compensate for errors in \mathbf{R}_{ul} .

State vector elements:

- wind speed
- Chl_a concentration
- $A(\lambda)$ for each wavelength separately

Forward Model: Land Reflection Matrix


$$\mathbf{R}_{s}(\lambda, \theta_{\text{in}}, \theta_{\text{out}}, \Delta \varphi) = r_{11}(\lambda, \theta_{\text{in}}, \theta_{\text{out}}, \Delta \varphi) \mathbf{D} + \mathbf{R}_{\text{pol}}$$
total reflectance polarized reflectance

$$r_{11}(\lambda, \theta_{\text{in}}, \theta_{\text{out}}, \Delta \varphi) = A(\lambda) \left(1 + k_{\text{geo}} f_{\text{geo}}(\theta_{\text{in}}, \theta_{\text{out}}, \Delta \varphi) + k_{\text{vol}} f_{\text{vol}}(\theta_{\text{in}}, \theta_{\text{out}}, \Delta \varphi) \right)$$

$$\mathbf{R}_{\text{pol}}(\theta_{\text{in}}, \theta_{\text{out}}, \phi_{\nu} - \phi_{0}) = B_{\text{pol}}\left(\frac{\exp\left(-\tan\left(\frac{\pi - \Theta}{2}\right)\right) \exp\left(-\nu\right) \mathbf{F}_{p}(m, \Theta)}{4(\mu_{\text{in}} + \mu_{\text{out}})}\right)$$

State vector elements:

- $A(\lambda)$ for each wavelength separately
- k_{aec}
- k_{vol}
- B_{pol}

Atmospheric Radiative Transfer

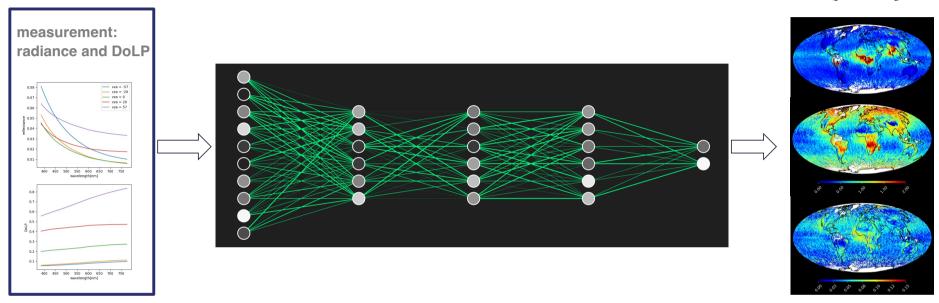
The last step of the forward model is to solve the Radiative Transfer Equation (RTE):

$$\mu rac{d\mathbf{I}(au,\mu)}{d au} = -\mathbf{I}(au,\mu) + \omega_0(au) \int_{-1}^1 \mathbf{P}(\mu,\mu')\,\mathbf{I}(au,\mu')\,d\mu'$$

$$\mu_i rac{d \mathbf{I}_i(au)}{d au} = -\mathbf{I}_i(au) + \omega_0(au) \sum_{j=1}^N w_j \, \mathbf{P}(\mu_i,\mu_j) \, \mathbf{I}_j(au), \quad i=1,\dots,N$$

For this purpose, RemoTAP uses the LINTRAN RT model (Schepers et al., 2014, Hasekamp et al., 2005, Landgraf et al., 2001; Hasekamp and Butz, 2008), based on the Gauss-Seidel method. GRASP uses Successive Order of Scattering (SOS) RT method (J. Lenoble, M. Herman et al., 2007)

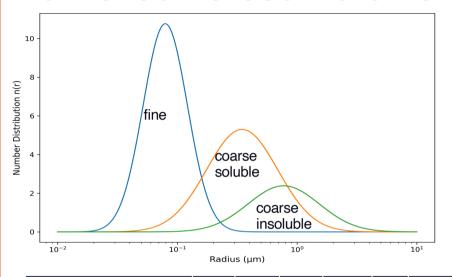
Inversion Procedure

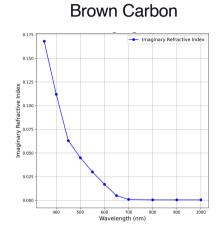

$$\mathbf{y} = \mathbf{F}(\mathbf{x}, \mathbf{b}) + \mathbf{e}_{\mathbf{y}}$$

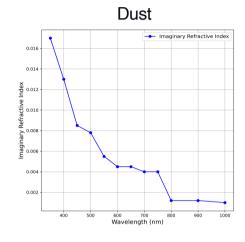
$$\mathbf{F}(\mathbf{x}) \approx \mathbf{F}(\mathbf{x}_n) + \mathbf{K} [\mathbf{x} - \mathbf{x}_n]$$
 $K_{ij} = \frac{\partial F_i}{\partial x_j} (\mathbf{x}_n)$

$$\mathbf{x}_{n+1} = \min_{\mathbf{x}} ([\mathbf{K} \, \mathbf{x} - \mathbf{y}]^T \, \mathbf{S}_{\mathbf{y}}^{-1} \, [\mathbf{K} \, \mathbf{x} - \mathbf{y}]) + ([\mathbf{x} - \mathbf{x}_a]^T \, \gamma^2 \mathbf{H}^{-1} \, [\mathbf{x} - \mathbf{x}_a])$$

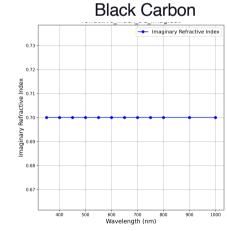
- F: Forward model, K is Jacobian.
- y: measurement vector with coivariance matrix S_y.
- x: State vector with prior x_a.
- H: Regularization matrix (puts all ekements of x in the same range and gives more freedom to some elements compared to others (similar to prior covariance in Optimal Estimation).
- γ : regularization parameter


Alternative Approach: Make use on Neural Networks (NNs)




- Create millions of training samples: Simulated measurements of radiance and polarization for varying aerosol and surface properties, for actual satellite geometries.
- Train an NN: Input simulated measurements and corresponding geometry; Output aerosol and surface properties.
- Apply the NN by giving real measurements and geometry as input.
- Advantage: much faster and more flexible (potentially more accurate)
- Disadvantage: strongly dependent on the training set and more difficult to diagnose (once trained, it is used as black box)

Retrieved Aerosol Parameters



	r _{eff}	V _{eff}	rri	iri	N	f _{sph}	ALH	
fine mode	√	√	√	√	√	√	✓	
coarse insoluble mode (dust)	√	X	X	√	√	√	√	
Coarse soluble mode	√	X	√	X	✓	X	√	
Surface	Land: BRDF Ross-Li, snow parameters, Maignan BPDF. ocean: Chlorophyll-a, wind-speed, + Lambertian correction term							
Optical Properties	AOT, SSA, phase function, Angstrom Exponent							

IRI is constructed from aerosol components Brow Carbon (BrC), Black Carbon (BC), and Dust.

Deriving Chemical Composition

- Coarse non-spherical mode → Mineral Dust
- Coarse spherical mode → Hydrated Sea Salt
- Fine mode consists of sulfates and nitrates (non-absorbing), black carbon, brown carbon, dust, and water:
 - $m(\lambda) = f_{dust} m_{dust}(\lambda) + f_{nonabs} m_{nonabs}(\lambda) + f_{bc} m_{bc}(\lambda) + f_{brc} m_{brc}(\lambda) + f_{h2o} m_{h2o}(\lambda)$
 - Volume fractions of BC, BrC, and Dust can be derived from spectral dependence of imaginary refractive index: $m_i(\lambda) = f_{dust} m_{dust}(\lambda) + f_{bc} m_{bc}(\lambda) + f_{oc} m_{oc}(\lambda)$
 - Then fraction of non-absorbing aerosol (sulfates, nitrates) and water can be derived from real part.
- The total volume of each mode can be computed from the retrieved size distribution. With the fractions above, we can retrieve total volume for each component (and the volume fraction)

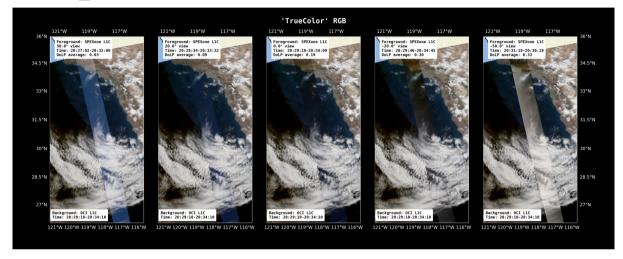
Aerosol Polarimetry: Expectations and Challenges

Expectations from multi-angle polarimetry:

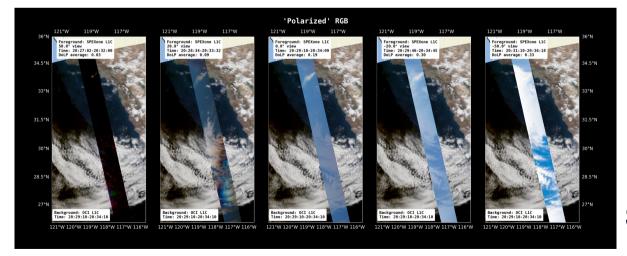
- ✓ Improved accuracy on existing products (AOD)
- \checkmark More information \Rightarrow new products such as size, absorption, composition/type, shape.
- ✓ Simultaneous retrieval of aerosol surface ocean cloud properties

But very challenging to exploit this large information content at a global scale.

- ✓ Complex algorithms needed with many fit parameters (aerosol+surface/ocean).
- ✓ Accurate/detailed forward model with online RT calculations.
- ✓ Challenging instrumentation (multi-angle registrations, radiometric/polarimetric uncertainties)

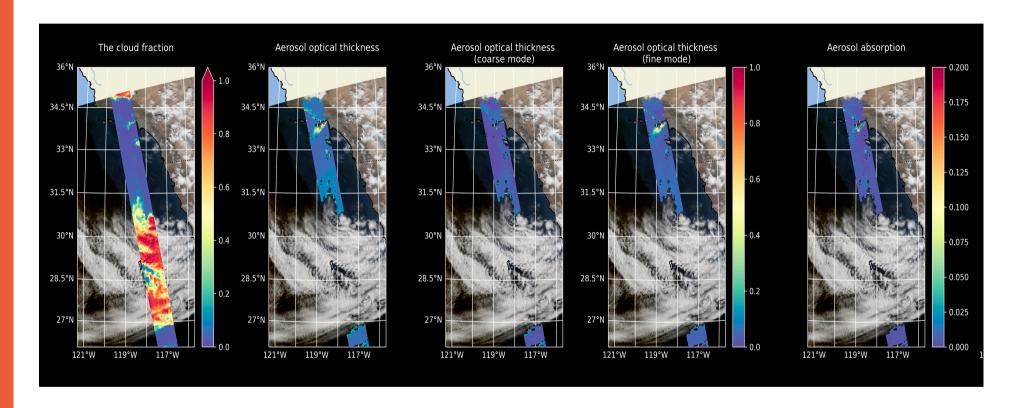


Examples from SPEXone/PACE

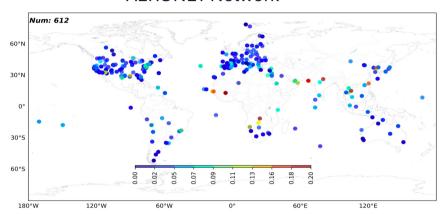


LA Fires: January 7th 2025

Radiance

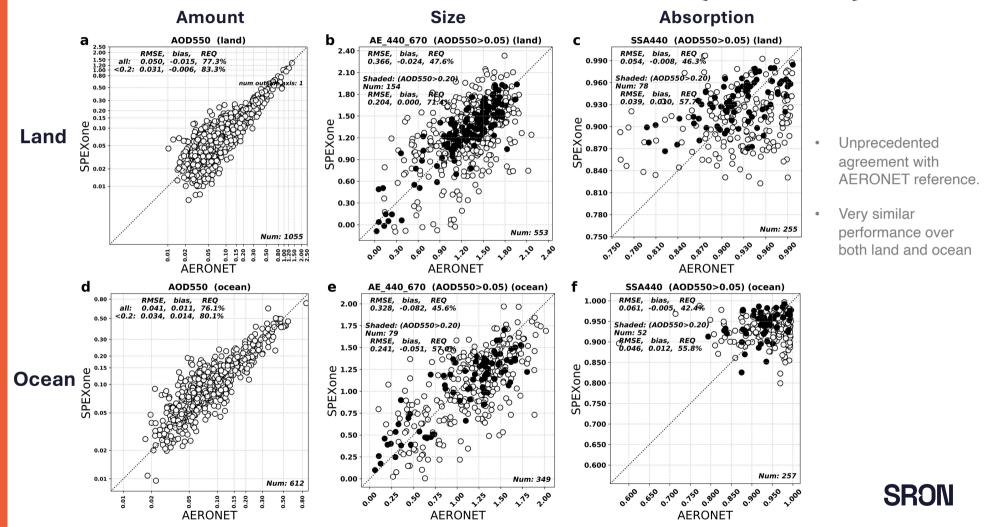


Polarized Radiance

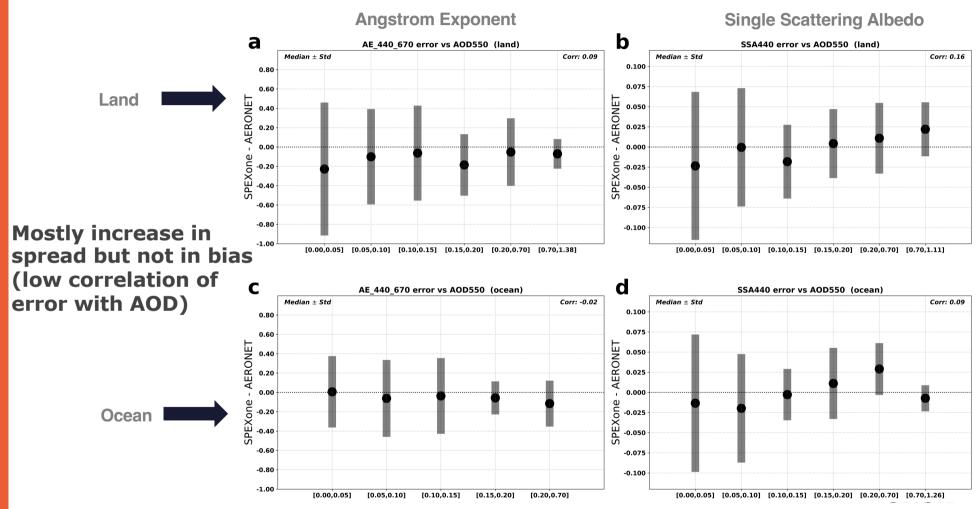

LA Fires: January 7th 2025

Validation of Aerosol Properties

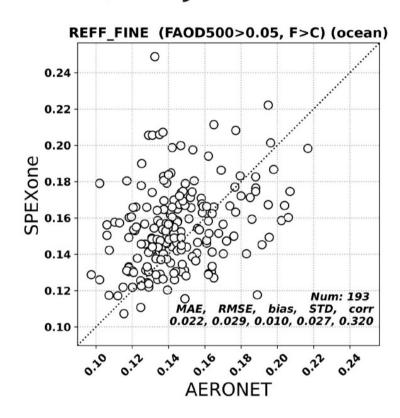
AERONET Network



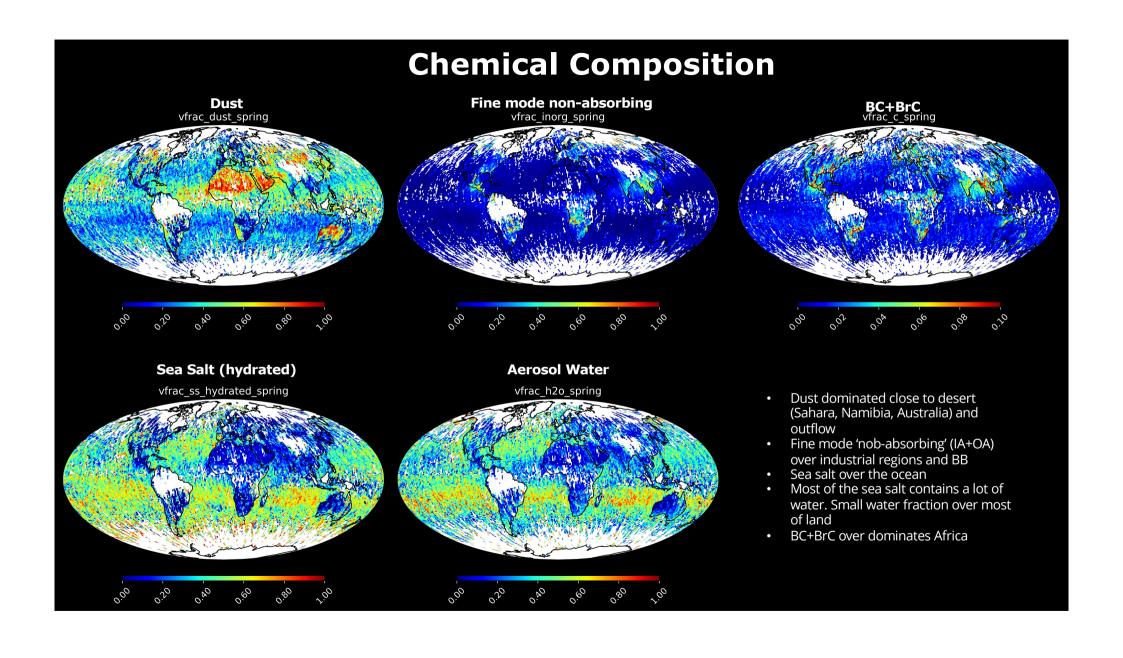
What can we validate with AERONET:

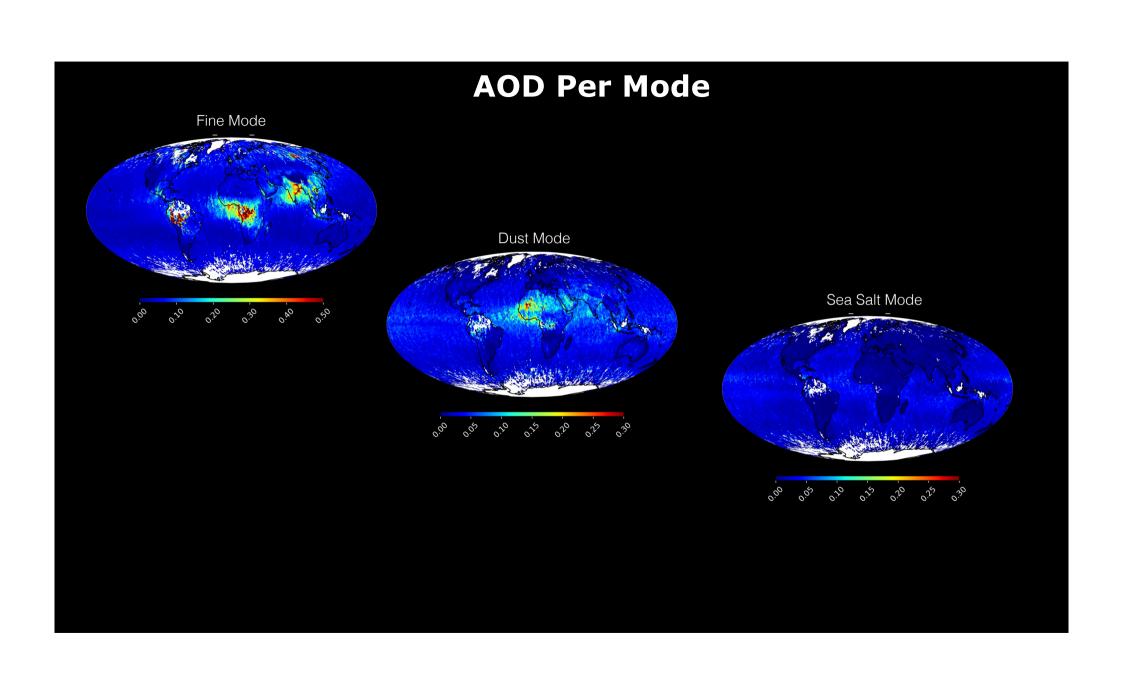

- Aerosol Optical Depth (AOD)
- Angstrom Exponent: AE = $\frac{\log(\frac{AOD_{\lambda 1}}{AOD_{\lambda 2})}}{\log(\frac{\lambda 1}{\lambda 2})}$. Wavelength
 - dependence of AOD: High AE \rightarrow small particles; low AE \rightarrow large particles
- Single Scattering Albedo (SSA): Measure for absorption (high SSA→ low absorption)
- Effective radius
- For AOD and AE, AERONET provides a very accurate reference. For SSA and effective radius, AERONET relies on many assumptions and is not necessarily more accurate than polarimetric satellite products.

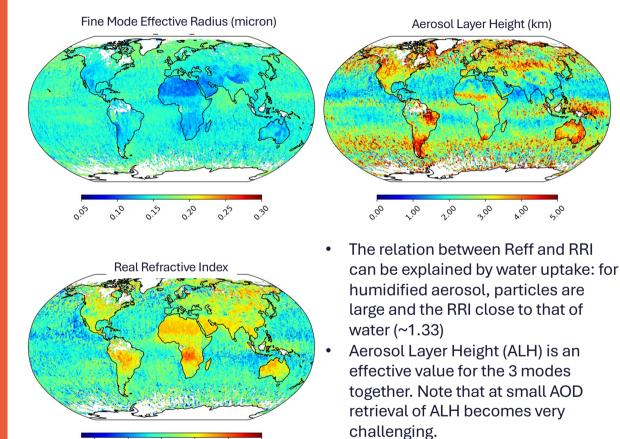
Validation of SPEXone with AERONET (One Year)

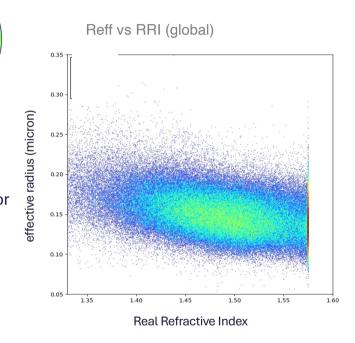


Performance towards low AOD

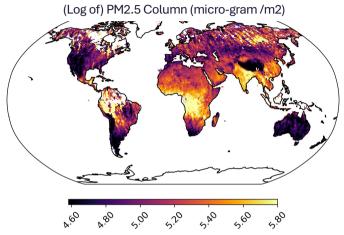

Validation of fine mode effective radius






First Year of SPEXone Data: AOD, size & absorbtion **Amount** Size **Absorption** fmf spring

Effective Radius, Refractive Index, and Aerosol Layer Height

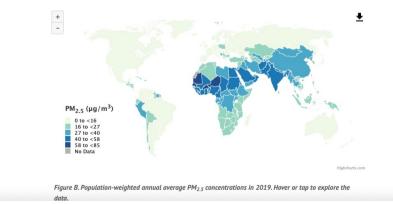


Can we derive PM2.5 from polarimetric aerosol data?

- PM2.5 (Particulate Matter < 2.5) are aerosols with a dry diameter < 2.5 micron. For AQ purpose, PM2.5 mass concentration close to the surface is relevant.
- Polarimeters can provide aerosol size distribution (wet), volume of water, and volume of dry components.
- This information can be used to derive the dry size distribution and (dry) volume of particles with diameter < 2.5 micron. Using the specific density of different aerosol components, we can translate volume into mass.
- This gives the PM2.5 total column. Based on the aerosol layer height, we can translate this into surface concentration.
- Caveats: Uncertainty in ALH will have large impact; Optical measurements are insensitive to very fine particles (< ~0.05 micron); retrieval of chemical composition makes many assumptions, which translate into uncertainty in PM2.5.

Preliminary maps of PM2.5 from space (SPEXone)

STATE OF GLOBAL AIR


Pollution and Its Sources > Health Impacts of Air Pollution > E

PM2.5 Exposure

Fine-particle outdoor air pollution remains high across much of the world.

Typical ranges PM2.5 surface concentration:

- •Clean background / remote regions:
- $\sim 1-5 \, \mu g/m^3$
- •Rural / suburban areas:
- \sim 5–15 μ g/m³
- •Urban background in developed countries:
- ~10–30 µg/m³
- •Highly polluted urban/industrial regions: 50–200+ µg/m³
- •Extreme episodes (wildfires, dust storms): can exceed 500 µg/m³ locally.

SRON

(Log of) PM2.5 BL concentration (micro-gram /m3)

Key Take-aways

- The angular and spectral, and polarization characteristics of scattered light depends on aerosol size, shape, composition (refractive index).
- That is why Multi-Angle Polarimeters can provide detailed information on aerosol properties.
- To extract this information, a retrieval algorithm is needed that matches a forward model (modeling optical properties, surface reflection, and transport of radiation through the atmosphere) to the satellite observations.
- SPEXone on PACE (launched Feb 2024) provides aerosol information with unprecedented accuracy. 3MI (launch Aug 2025) is now in commissioning phase and data will become available in 2026.
- Using retrieved size, composition, and aerosol layer height, boundary layer PM2.5 can be approximated. This is still a very preliminary product and extensive validation and (probably) algorithmic improvements are needed.

