
1

T
O

 B
R

IN
G

 A
B

O
U

T
 B

R
E

A
K

T
H

R
O

U
G

H
S

 I
N

 I
N

T
E

R
N

A
T

IO
N

A
L

 S
P

A
C

E
 R

E
S

E
A

R
C

H

Aerosol Remote Sensing from Polarimetric 
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Aerosol Effects on Climate
4
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Aerosols and Air Quality
5
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What Aerosol properties do we need to measure?
• Optical properties such as Aerosol Optical Depth (AOD) and Single 

Scattering Albedo (SSA): Needed to quantify aerosol-radiation 
interactions (climate) but also serve as proxy for aerosol amount and 
composition (climate & air quality).

• Aerosol size distribution: Needed for air quality research (fine 
particles are most harmful and also for aerosol cloud interactions.

• Composition: Needed to quantify emission sources and aerosol water 
uptake (climate and air quality). Refractive index can be used to 
distinguish between the most important aerosol components: Dust, Sea 
Salt, Sulfates/Nitrates, Black Carbon, Brown Carbon, aerosol water.
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Measurement Principle
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radiance spectrum

polarization

Multiple viewing angles

Aerosol properties can be derived from 
measurements of scattered light

atmosphere

land surface
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A Polarized View

Degree of Linear Polarization (DoLP):
DoLP = !

"!#$!
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How to Best Measure Aerosol Properties with a satellite?
10

The angular and spectral dependence of intensity and degree of 
polarization depend on the particle on which it is scattered.

atmosphere

land surface
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Typical Polarization Features from Aerosol Scattering

• Fine mode aerosols (typical effective radius between 0.10-0.2 
micron): 
• Strong polarization peak near 90-100o scattering angle à Rayleigh like 
scattering mixed with larger particles.

• Peak shifts to larger scattering angles when particle size increases.
• Absorption slightly reduces the peak

• Mineral Dust (Coarse non spherical particles, typically modeled as 
ellipsoids).
• Weak polarization with broad maximum for scattering angle 100-120o. 

• Sea salt (Hydrated spherical particles with refractive index close to 
water)
• Rainbow-like features with strong polarization near 150o.
• When sea salt becomes dryer (smaller particles, larger refractive index) 
weaker polarization with peak shifted toward larger scattering angles, and 
broader (negative) maximum between scattering angles 120-130o.
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Polarimeters in Space
12

PARASOL

2005 2013 2024 2025 2026

SPEXone – PACE

HARP2 – PACE

3MI CO2M

>10 year GAP!

PACE

MAP
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3MI: Launch August 2025

natural light                                              polarized light
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SPEXone/PACE: Launch February 2024
14

Parameter Specification

Spatial resolution 5X5 km2

Swath 100 km

Spectral resolution 
(radiance)

400 bands, 2nm 
FWHM

Spectral resolution 
(polarization)

50 bands 10-30 nm 
FWHM

Accuracy 2% (radiometric), 
0.003 (polarimetric)
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Deriving Aerosol Properties from Polarimetric 
Measurements
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Overview of Retrieval Procedure

state vector: 
aerosol and surface 
properties

Forward Model: 
Simulate the measurement measurement: 

radiance and 
DoLP

minimize difference

update till optimal agreement
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RemoTAP and GRASP
17

ü RemoTAP algorithm
(Hasekamp et al., 2011; 2019; Fu et al., AMT, 2018;2020;2025; Lu et al., Frontiers, 2022)
Remote Sensing of Trace Gas and Aerosol Products

ü algorithm

(Dubovik et al., 2011, 2014, 2021; Chen et al.,ESD, 2020) 
Generalized Retrieval of Atmosphere and Surface Properties

Other algorithms (Applied to airborne data): Waquet et al. (2009), Xu et al. (2017), Stamnes et al. (2018), 
Zhai et al. (2018), Gao et al. (2019)
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Forward Model
18

atmosphere

land surface / ocean

Optical properties:
Mie/T-matrix /Geometrical Optics table from Dubovik et 
al. (2006) for mixture of spheroids and spheres.

Surface Reflection:
Take into account the multi-directional and polarization 
aspects of surface reflection. Over land, this is done 
using semi-empirical models. Over ocean, the model 
takes into account reflection by the rough ocean 
surface (depending on wind-speed) and transport of 
radiation in the ocean body.

Radiative Transfer:
Having the optical properties of atmosphere and 
surface, we can model the transport of radiation in the 
atmosphere to simulate the satellite measurement of 
radiance and polarization at the top-of-atmosphere.
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Forward Model: Aerosol Properties to Optical Properties
19

Microphysical 
properties (size, 

refractive index, shape)

Mie calculations per 
particle radius bin

T-Matrix / Geometric 
Optics calculation per 

radius bin

Integrate over size 
distribution

Input to radiative 
transfer model

scattering/absorption 
cross-section, Phase 

Matrix

spheres

spheroids
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Forward Model: Ocean Reflection Matrix
20

Rfrn: Fresnel reflection matrix on a rough ocean surface. Cox-Munk model, wind speed as free parameter (optional in 2 
directions).

Rul: Ocean body contribution. Bio-optical model of Chowdhary et al. for case 1 waters. Chla concentration as free 
parameter. RT insider ocean body replaced by NN (Fan et al., 2019).

A(l): Lambertian albedo term (separately fitted for each wavelength) to account for foam and to compensate for errors in 
Rul.

State vector elements:
• wind speed
• Chla concentration
• A(l) for each wavelength separately
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Forward Model: Land Reflection Matrix
21

State vector elements:
• A(l) for each wavelength separately
• kgeo
• kvol
• Bpol

+

total reflectance polarized reflectance
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Atmospheric Radiative Transfer
The last step of the forward model is to solve the Radiative Transfer Equation (RTE):

For this purpose, RemoTAP uses the LINTRAN RT model (Schepers et al., 2014, Hasekamp et al., 2005, 
Landgraf et al., 2001;Hasekamp and Butz, 2008), based on the Gauss-Seidel method.
GRASP uses Successive Order of Scattering (SOS) RT method (J. Lenoble, M. Herman et al., 2007)
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Inversion Procedure
23

• F: Forward model, K is Jacobian.
• y: measurement vector with coivariance matrix Sy.
• x: State vector with prior xa.
• H: Regularization matrix (puts all ekements of x in the same range and gives more 

freedom to some elements compared to others (similar to prior covariance in 
Optimal Estimation).

• g: regularization parameter
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measurement: 
radiance and DoLP

Alternative Approach: Make use on Neural Networks (NNs)

• Create millions of training samples: Simulated measurements of radiance and 
polarization for varying aerosol and surface properties, for actual satellite 
geometries.

• Train an NN: Input simulated measurements and corresponding geometry; Output 
aerosol and surface properties.

• Apply the NN by giving real measurements and geometry as input.
• Advantage: much faster and more flexible (potentially more accurate)
• Disadvantage: strongly dependent on the training set and more difficult to diagnose 

(once trained, it is used as black box)
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Retrieved Aerosol Parameters

fine

coarse 
soluble

coarse 
insoluble

reff veff rri iri N fsph ALH

fine mode ✔ ✔ ✔ ✔ ✔ ✔ ✔

coarse insoluble mode 
(dust)

✔ ✗ ✗ ✔ ✔ ✔ ✔

Coarse soluble mode ✔ ✗ ✔ ✗ ✔ ✗ ✔

Surface Land:  BRDF Ross-Li, snow parameters, Maignan BPDF. ocean:  
Chlorophyll-a, wind-speed, + Lambertian correction term

Optical Properties AOT, SSA, phase function, Angstrom Exponent

DustBrown Carbon

Black Carbon

IRI is constructed 
from aerosol 
components Brow 
Carbon (BrC), 
Black Carbon (BC), 
and Dust.
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Deriving Chemical Composition
• Coarse non-spherical mode à Mineral Dust
• Coarse spherical mode à Hydrated Sea Salt

• Fine mode consists of sulfates and nitrates (non-absorbing), black carbon, 
brown carbon, dust, and water:
• 𝑚 𝜆 = 𝑓"#$%𝑚"#$% λ + 𝑓&'&()$𝑚&'&()$ λ + 𝑓)*𝑚)* λ + 𝑓)+*𝑚)+* λ + 𝑓,-'𝑚,-' λ 	
• Volume fractions of BC, BrC, and Dust can be derived from spectral dependence of 
imaginary refractive index:   𝑚𝑖 𝜆 = 𝑓"#$%𝑚"#$% λ + + 𝑓)*𝑚)* λ + 𝑓'*𝑚'* λ

• Then fraction of non-absorbing aerosol (sulfates, nitrates) and water can be derived 
from real part.

• The total volume of each mode can be computed from the retrieved size 
distribution. With the fractions above, we can retrieve total volume for each 
component (and the volume fraction)
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Aerosol Polarimetry: Expectations and Challenges
27

But very challenging to exploit this large information content at a global scale. 
ü Complex algorithms needed with many fit parameters (aerosol+surface/ocean).

ü Accurate/detailed forward model with online RT calculations.

ü Challenging instrumentation (multi-angle registrations, radiometric/polarimetric uncertainties

Expectations from multi-angle polarimetry:
ü Improved accuracy on existing products (AOD)

ü More information à new products such as size, absorption, composition/type, shape.

ü Simultaneous retrieval of aerosol – surface – ocean – cloud properties

Mishchenko and Travis, 1997;  Hasekamp et al., 2007; 2010; 2011; 
Knobelspiesse et al., 2012; Dubovik et al., 2011; Xu et al., 2017
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Examples from SPEXone/PACE
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LA Fires: January 7th 2025

Radiance

Polarized Radiance
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LA Fires: January 7th 2025
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Validation of Aerosol Properties
31

AERONET netwerkAERONET Network

What can we validate with AERONET:
• Aerosol Optical Depth (AOD)

• Angstrom Exponent: AE = 
%&'(

./012
./01!)

%&'(121!)
.	Wavelength 

dependence of AOD: High AE à small particles; low AE 
à large particles

• Single Scattering Albedo (SSA): Measure for absorption 
(high SSAà low absorption)

• Effective radius

• For AOD and AE, AERONET provides a very accurate 
reference. For SSA and effective radius, AERONET relies 
on many assumptions and is not necessarily more 
accurate than polarimetric satellite products. 
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Land

Ocean

• Unprecedented 
agreement with 
AERONET reference.

• Very similar 
performance over 
both land and ocean

Validation of SPEXone with AERONET (One Year)
Amount Size Absorption
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Performance towards low AOD

Mostly increase in 
spread but not in bias 
(low correlation of 
error with AOD)

Angstrom Exponent Single Scattering Albedo

Land

Ocean
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Validation of fine mode effective radius



Amount AbsorptionSize

First Year of SPEXone Data: AOD, size & absorbtion



Dust

Sea Salt (hydrated) Aerosol Water

Fine mode non-absorbing BC+BrC

Chemical Composition

• Dust dominated close to desert 
(Sahara, Namibia, Australia) and 
outflow

• Fine mode ‘nob-absorbing’ (IA+OA) 
over industrial regions and BB

• Sea salt over the ocean
• Most of the sea salt contains a lot of 

water. Small water fraction over most 
of land

• BC+BrC over dominates Africa



AOD Per Mode
Fine Mode

Dust Mode

Sea Salt Mode
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Effective Radius, Refractive Index, and Aerosol Layer Height

Reff vs RRI (global)

Real Refractive Index
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Real Refractive Index

Fine Mode Effective Radius (micron) Aerosol Layer Height (km)

• The relation between Reff and RRI 
can be explained by water uptake: for 
humidified aerosol, particles are 
large and the RRI close to that of 
water (~1.33)

• Aerosol Layer Height (ALH) is an 
effective value for the 3 modes 
together. Note that at small AOD 
retrieval of ALH becomes very 
challenging.
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Can we derive PM2.5 from polarimetric aerosol data?

• PM2.5 (Particulate Matter < 2.5) are aerosols with a dry diameter < 2.5 
micron. For AQ purpose, PM2.5 mass concentration close to the surface is 
relevant.

• Polarimeters can provide aerosol size distribution (wet), volume of water, 
and volume of dry components.

• This information can be used to derive the dry size distribution and (dry) 
volume of particles with diameter < 2.5 micron. Using the specific density 
of different aerosol components, we can translate volume into mass.

• This gives the PM2.5 total column. Based on the aerosol layer height, we 
can translate this into surface concentration.

• Caveats: Uncertainty in ALH will have large impact; Optical measurements 
are insensitive to very fine particles (< ~0.05 micron); retrieval of 
chemical composition makes many assumptions, which translate into 
uncertainty in PM2.5.
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Preliminary maps of PM2.5 from space (SPEXone)
(Log of) PM2.5 Column (micro-gram /m2) (Log of) PM2.5 BL concentration (micro-gram /m3) 

Typical ranges PM2.5 surface concentration:
•Clean background / remote regions:
~1–5 µg/m³
•Rural / suburban areas:
~5–15 µg/m³
•Urban background in developed countries:
~10–30 µg/m³
•Highly polluted urban/industrial regions:
50–200+ µg/m³
•Extreme episodes (wildfires, dust storms):
can exceed 500 µg/m³ locally.
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Key Take-aways
• The angular and spectral, and polarization characteristics of 

scattered light depends on aerosol size, shape, composition 
(refractive index).

• That is why Multi-Angle Polarimeters can provide detailed information 
on aerosol properties.

• To extract this information, a retrieval algorithm is needed that 
matches a forward model (modeling optical properties, surface 
reflection, and transport of radiation through the atmosphere) to the 
satellite observations.

• SPEXone on PACE (launched Feb 2024) provides aerosol information with 
unprecedented accuracy. 3MI (launch Aug 2025) is now in commissioning 
phase and data will become available in 2026.

• Using retrieved size, composition, and aerosol layer height, boundary 
layer PM2.5 can be approximated. This is still a very preliminary 
product and extensive validation and (probably) algorithmic 
improvements are needed.


