

JOINT TRAINING IN ATMOSPHERIC COMPOSITION

13 -17 OCTOBER 2025, BRUSSELS

Introduction

IASI and thermal IR observations

Existing IASI dust products

Dust AOD 10µm, 550nm, mean altitude, vertical profiles – different algorithms

"The technical minute"

A bit on the Optimal Estimation Method

Potential applications

Source analysis, trends, aerosol alerts

Wrap up, future and questions

Introduction

IASI and thermal IR observations

Existing IASI dust products

Dust AOD 10µm, 550nm, mean altitude, vertical profiles different algorithms

"The technical minute"

A bit on the Optimal Estimation Method

Potential applications

Source analysis, trends, aerosol alerts

Wrap up, future and questions

Mineral dust aerosols

Recall talk from Samuel Remy this morning!

Small mineral (sand) particles uplifted by strong winds from dry / bare areas

The IASI instrument

Orbital characteristics:

- Sun-synchronous (LEO)
- Overpass at local solar time:

~9h30 and 21h30

"descending" - "ascending"

Observation technique:

- Nadir, across path scanning, FTIR
- 12km diameter pixels (at nadir)

Spectral ranges

Thermal IR specificities

Thermal Infrared radiative considerations

- Surface as source: temperature, emissivity
- Atmosphere as source: gases, aerosols, clouds (and their temperature)
- Atmosphere as sink: absorption and scattering by gases, aerosols, clouds
- No solar light needed -> day & night

Aerosol signature (in TIR)

- Absorption/emission → minerals
 → dust and ash
- Scattering → coarse mode (large particles)

Thermal IR specificities: sensitivity

- > Radiance intensity -> mostly surface temperature + surface emissivity
- ➤ Impact of the dust on the signal -> total amount of dust thermal contrast <-> altitude
- ➤ Need for **silicates** in the composition -> not Iceland dust
- > Difficulty to discriminate dust from thin clouds and dust is a CCN and ICN

Example IASI spectrum

Spectral characteristics:

- Resolution 0.25cm⁻¹ FWHM 0.5cm⁻¹ (gaussian ILS)
- Noise varies with wavenumber, <0.2K in most of the spectrum

BIRA•IASB

Mineral dust observations with IASI

Godzilla dust storm, (20) June 2020

MAPIR: Mineral Dust Profiling from Infrared Radiances

copernicus.eumetsat.int

Introduction

IASI and thermal IR observations

Existing IASI dust products

Dust AOD 10µm, 550nm, mean altitude, vertical profiles - different algorithms

"The technical minute"

A bit on the Optimal Estimation Method

Potential applications

Source analysis, trends, aerosol alerts

Wrap up, future and questions

Mineral dust observations with IASI

4 very different algorithms provide full data sets

ULB Dust

Dust index converted to AOD through NN

Parameters: dust AOD - dust index

Availability: CDS (level 3) - EUMETSAT and (level

2) https://www.aeris-data.fr

Infrared Mineral Aerosol Retrieval Scheme (IMARS)

Probabilistic estimations (dust/ice)

Parameters: dust AOD and layer T,

dust size and composition

Availability: CDS (level 3)

LMD Dust

Lookup tables (3 steps)

Parameters: dust AOD and mean altitude, dust

effective radius (not public)

Availability: CDS (level 3, not the radius) and (level

2) https://www.aeris-data.fr

Mineral Aerosol Profiling from Infrared Radiances

(MAPIR)

Optimal estimation

<u>Parameters</u>: dust AOD, mean altitude, vertical

profile

Availability: CDS (level 3, not the profiles) and

(level 2) https://iasi.aeronomie.be

IASI dust AOD 10µm

Example: « Godzilla » storm, 20 June 2020 9h30 LST

(last version available, for each algorithm)

IASI dust AOD 550 nm: « conversion »

IASI data: TIR, dust coarse mode AOD obtained at ~10μm (1000cm⁻¹)

Most other data: IV, VIS, Total AOD usually reported at 500-550nm

Dust AOD conversion 10μm -> 550nm

- Requires assumptions on particle optical properties – the conversion is more sensitive to those properties than the retrieval itself!
 - Increases the uncertainty
- Converts only what is observable at 10μm
 (= coarse dust particles)

IASI dust mean altitude

Example: « Godzilla » storm, 20 June 2020 9h30 LST

(last version available, for each algorithm)

Mineral dust AOD and profiles retrieved from satellite thermal infrared observations by IASI

IASI dust MAPIR vertical information

MAPIR contains profile information, can separate 2 distinct layers

20 June 2020, « Godzilla », morning overpass

IASI dust MAPIR vertical information

MAPIR contains profile information, can separate 2 distinct layers
9 June 2018

copernicus.eumetsat.int

Introduction

IASI and thermal IR observations

Existing IASI dust products

Dust AOD 10µm, 550nm, mean altitude, vertical profiles different algorithms

"The technical minute"

A bit on the Optimal Estimation Method

Potential applications

Source analysis, trends, aerosol alerts

Wrap up, future and questions

Radiative transfer model, also called « forward » model

It computes the **radiance** that should be observed given:

- An atmospheric state and Earth surface description
- The physics of the light interaction with surface and atmosphere components
- The properties of the instrument one wants to simulate

This is usually called **the « inverse » problem** and it requires **numerical computing**

- More observations than unknowns
- Observations are « noisy » and often partially correlated
- The « forward » model is most commonly **non linear**
- The **sensitivity** of the observation to the atmospheric and surface state is not perfect, can even be completely masked
- A large number of atmospheric and surface state parameters are fixed,
 and their uncertainty affects the finding of a solution

Different methods exist (based on statistics), and require an **iterative resolution**, **with constraints**, **minimizing a defined** « **cost function** », and with defined criteria deciding when to stop the process

The solution obtained is not the truth, but a best estimate of it, given some « a priori » knowledge

Radiative transfer (forward) model

Spectrum (or a selected part of it)

 $y = F(x,b) + \epsilon$ Noise (spectral, model, ...)

Parameters that you do not retrieve (fixed) "State vector" = what you want to retrieve

a priori:
«knowledge» of
the atmosphere
-> Climatology

Noise covariance matrix

"Residual" = observed – modelled spectrum

Function to minimize

$$\chi^2 = [\mathbf{y} - \mathbf{F}(x,b)]^T \mathbf{S}_{\epsilon}^{-1} [\mathbf{y} - \mathbf{F}(x,b)]$$

$$+(x-x_a)^TS_a^{-1}(x-x_a)$$

Departure from the a priori

A priori covariance matrix

"How good we reproduce the observation, knowing its uncertainty"

"How far we are from the a priori, knowing its (co)-variance"

-> constraint

A priori covariance matrix

Noise covariance matrix

Iterative resolution

Initial value x₀:
"first guess",
often x_a but not
mandatory

 $\mathbf{x}_{i+1} = \mathbf{x}_i + \left((1+\gamma) \mathbf{S}_a^{-1} + \mathbf{K}_i^T \mathbf{S}_{\epsilon}^{-1} \mathbf{K}_i \right)^{-1}$

$$\left(\mathbf{K}_{i}^{T}\mathbf{S}_{\epsilon}^{-1}(y-F(x_{i}))-\mathbf{S}_{a}^{-1}(x_{i}-x_{a})\right)$$

"Residual" = observed – modelled spectrum

Departure from the a priori

"Jacobians" = derivatives of radiance wrt x

Important note: in MAPIR the state vector is log(concentration), to avoid negative values

"Averaging kernel" or "smoothing functions"

Sensitivity of the retrieval to true state.
Shows how the observation+retrieval system smoothes a vertical profile.

"Jacobians" or "Kernel" or "weighting functions"

- = derivatives of radiance wrt x
- → Sensitivity of the forward model to x

Noise covariance matrix

$$G = (KT S_{\varepsilon}^{-1} K + S_{\partial}^{-1})^{-1} K^{T} S_{\varepsilon}^{-1}$$

"Gain" or "contribution functions"

→ Sensitivity of the retrieval to observation

A priori covariance matrix

Trace(A) -> number of degrees of freedom (DOFs) / of independent pieces of information

see Mel Ades tomorrow and practicals on Wed 15/10

Mineral dust AOD and profiles retrieved from satellite thermal infrared observations by IASI

IASI dust MAPIR DOFs

Example: « Godzilla » storm, 20 June 2020

!! Retrieval runs on log(concentration) -> AKs are different, tend to peak where the dust concentration is high

IASI dust MAPIR AKS

Example: « Godzilla » storm, 20 June 2020

Over the desert, DOF > 2

Over the ocean, DOF = 1.5

!! Retrieval runs on log(concentration) -> AKs are different, tend to peak where the dust concentration is high

IASI dust MAPIR vertical information

MAPIR contains profile information, can separate 2 distinct layers 20 June 2020, « Godzilla »

Introduction

IASI and thermal IR observations

Existing IASI dust products

Dust AOD 10µm, 550nm, mean altitude, vertical profiles – different algorithms

"The technical minute"

A bit on the Optimal Estimation Method

Potential applications

Source analysis, trends, aerosol alerts

Wrap up, future and questions

Mineral dust AOD and profiles retrieved from satellite thermal infrared observations by IASI

Applications? Aerosol alerts

- > aerosol-alerts.atmosphere.copernicus.eu
 - -> see Mel Ades tomorrow

-> see practicals on Tuesday 14/10

dust.aemet.es (SDS WAS)

Some are in development for using IASI dust data ...

Applications? Weather forecast

Mineral dust impacts:

- the atmospheric temperature profile (local heating)
- the atmospheric circulation
- the surface temperature (local cooling)
- The cloud properties, lifetime and rain amount / location
- -> It needs to be accounted for in weather forecast models
- -> Some thinking and discussions have started about using IASI, some centres would prefer to have geostationnary data with higher repetitions

Introduction

IASI and thermal IR observations

Existing IASI dust products

Dust AOD 10µm, 550nm, mean altitude, vertical profiles – different algorithms

"The technical minute"

A bit on the Optimal Estimation Method

Potential applications

Source analysis, trends, aerosol alerts

Wrap up, future and questions

TIR aerosol observations: wrap up

Four algorithms... results are similar overall but not in details...

- Wrong classification -> no data...
- Dust is CCN and IN -> quite often mixed...

Difficult over cold surfaces and for low AOD (low sensitivity, higher uncertainty, noise, and lower information content)

« Mineral-specific » but actually requires silicates (local high-latitude dust not observed)

Thermal IR retrievals are « mineral—specific »... while other retrievals have a hard time separating different aerosol types

Night-time observations are available

Vertical sensitivity (limited) with global coverage

Mineral dust AOD and profiles retrieved from satellite thermal infrared observations by IASI

Always keep in mind...

IASI « sees » coarse dust only
IASI dust product is obtained at ~10μm

→ Converting to 550nm requires assumptions and increases uncertainty

And towards the future

IASI-NG onboard Metop-SG, launched 13 August 2025

The same AC-SAF products are planned as for IASI (dust index, AOD, profiles) Expected small improvement in quality due to the lower spectral noise.

InfraRed Sounder (IRS) onboard Meteosat Third Generation, launched 1 July 2025

Geostationnary instrument over Europe and Africa

High repetition time, very interesting to follow emissions and plumes

Very interesting for alerts and weather forecast

Planned within AC SAF: dust flag

Project currently under evaluation: dust profiles

Some links to data

Level 2: each satellite obs

Level 3 data (DOD, mean altitude, daily, monthly, morning / evening / combined), documentation and quality information: https://cds.climate.copernicus.eu

Level 2 data for LMD (with mean altitude) and ULB:

https://www.aeris-data.fr

Level 2 data for MAPIR (with vertical profiles):

http://iasi.aeronomie.be

Near-real-time data through EumetCast:

- ULD AOD and dust index (level 2)
- Soon: MAPIR profiles, AOD and mean altitude

Some references

Retrieval algorithms (not always the last version)

- ULB: 10.1029/2018JD029701
- LMD: 10.1016/j.rse.2017.12.008
- IMARS: 10.1016/j.rse.2014.09.036
- MAPIR: 10.5194/amt-12-3673-2019

MAPIR applications:

- Sources:10.5194/acp-20-15127-2020
- Trends: presented at conferences only

Thank you!

Questions are welcome.

