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CAMS Aerosol model
Sea salt (0.03-0.5um)

Desert dust (0.03-0.55um)

Sea salt (0.5-5um) Sea salt (5-20um) Black carbon
hydrophobic

Desert dust (0.55-9um) Desert dust (9-20um) Black carbon
hydrophilic

Organic matter
hydrophobic

Organic matter
hydrophilic

Nitrate from 
gas/particle partition

Nitrate from het. 
reactions

Ammonium

Sulphate

SOA biogenic

SOA anthropogenic

• CAMS uses a bin/bulk aerosol scheme to model the transport, emission and deposition of small particles/aerosols
• 16 different tracers are used to represent 8 different aerosol species
• Each type of aerosol has bespoke processes modelling how that aerosol behaves in the model: emission, deposition, 

sedimentation, chemical reactions
• Coupled to chemistry via sulphate, nitrate and ammonium and via aerosol input to the CB05 chemical scheme

Desert dust

Sea salt

Biomass burning Sulphate

Aerosol optical depth at 550nm valid for Tuesday 8th July 2025, 3 UTC

See Samuel 
Remy lecture 
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Agenda

Data Assimilation
What is it and how does it work for aerosols?

Challenges of DA for aerosols
Correcting different species height profiles of 
aerosols

Emission inversions for aerosols
Can we use satellite aerosol observations to 
correct emissions? 

CAMS aerosol applications
How are the aerosol forecasts used? 
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Data Assimilation: what is it?

Satellite observations

Analysis Forecast Analysis 

Yesterday’s forecast is adjusted by today’s observations to 
produce the outlook for tomorrow. Every day.

Forecast 
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Data Assimilation: what is it?

𝐽𝐽 𝑥𝑥 = 𝑥𝑥 − 𝑥𝑥𝑏𝑏 𝑇𝑇𝐵𝐵−1 𝑥𝑥 − 𝑥𝑥𝑏𝑏 + �
𝑖𝑖=0

𝑛𝑛

𝑦𝑦𝑖𝑖 − 𝐻𝐻𝑖𝑖 𝑥𝑥𝑖𝑖 𝑇𝑇𝑅𝑅𝑖𝑖−1(𝑦𝑦𝑖𝑖 − 𝐻𝐻𝑖𝑖 𝑥𝑥𝑖𝑖 )

CAMS assimilation window

• NWP definition: Combining data and model in an ‘optimal’ way to produce the best possible initial conditions for a numerical forecast

• Optimal in a statistical sense: minimize error and/or maximize probability of the analysis being correct

• Many different methods exist for solving this problem; ENKF,  En-4D-Var,  EnVar, 3D-Var, 4D-Var

• CAMS uses ECMWF’s 4-dimensional variational data assimilation system or 4D-Var with a 12-h window
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Data Assimilation: what is it?

𝐽𝐽 𝑥𝑥 = 𝑥𝑥 − 𝑥𝑥𝑏𝑏 𝑇𝑇𝐵𝐵−1 𝑥𝑥 − 𝑥𝑥𝑏𝑏 + �
𝑖𝑖=0

𝑛𝑛

𝑦𝑦𝑖𝑖 − 𝐻𝐻𝑖𝑖 𝑥𝑥𝑖𝑖 𝑇𝑇𝑅𝑅𝑖𝑖−1(𝑦𝑦𝑖𝑖 − 𝐻𝐻𝑖𝑖 𝑥𝑥𝑖𝑖 )

CAMS assimilation window

The background model state 
comes from the previous 
forecast and is the initial best 
guess of the state of the 
aerosols in the atmosphere

• NWP definition: Combining data and model in an ‘optimal’ way to produce the best possible initial conditions for a numerical forecast

• Optimal in a statistical sense: minimize error and/or maximize probability of the analysis being correct

• Many different methods exist for solving this problem; ENKF,  En-4D-Var,  EnVar, 3D-Var, 4D-Var

• CAMS uses ECMWF’s 4-dimensional variational data assimilation system or 4D-Var with a 12-h window
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Data Assimilation: what is it?

𝐽𝐽 𝑥𝑥 = 𝑥𝑥 − 𝑥𝑥𝑏𝑏 𝑇𝑇𝐵𝐵−1 𝑥𝑥 − 𝑥𝑥𝑏𝑏 + �
𝑖𝑖=0

𝑛𝑛

𝑦𝑦𝑖𝑖 − 𝐻𝐻𝑖𝑖 𝑥𝑥𝑖𝑖 𝑇𝑇𝑅𝑅𝑖𝑖−1(𝑦𝑦𝑖𝑖 − 𝐻𝐻𝑖𝑖 𝑥𝑥𝑖𝑖 )

CAMS assimilation window

The observations for aerosols 
come from satellites in the 
CAMS system and are of 
Aerosol Optical Depth

• NWP definition: Combining data and model in an ‘optimal’ way to produce the best possible initial conditions for a numerical forecast

• Optimal in a statistical sense: minimize error and/or maximize probability of the analysis being correct

• Many different methods exist for solving this problem; ENKF,  En-4D-Var,  EnVar, 3D-Var, 4D-Var

• CAMS uses ECMWF’s 4-dimensional variational data assimilation system or 4D-Var with a 12-h window
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Data Assimilation: what is it?

𝐽𝐽 𝑥𝑥 = 𝑥𝑥 − 𝑥𝑥𝑏𝑏 𝑇𝑇𝐵𝐵−1 𝑥𝑥 − 𝑥𝑥𝑏𝑏 + �
𝑖𝑖=0

𝑛𝑛

𝑦𝑦𝑖𝑖 − 𝐻𝐻𝑖𝑖 𝑥𝑥𝑖𝑖 𝑇𝑇𝑅𝑅𝑖𝑖−1(𝑦𝑦𝑖𝑖 − 𝐻𝐻𝑖𝑖 𝑥𝑥𝑖𝑖 )

CAMS assimilation window

The observation equivalent 
model values are calculated 
from a trajectory started from 
a new initial condition and the 
difference to the actual 
observations calculated

• NWP definition: Combining data and model in an ‘optimal’ way to produce the best possible initial conditions for a numerical forecast

• Optimal in a statistical sense: minimize error and/or maximize probability of the analysis being correct

• Many different methods exist for solving this problem; ENKF,  En-4D-Var,  EnVar, 3D-Var, 4D-Var

• CAMS uses ECMWF’s 4-dimensional variational data assimilation system or 4D-Var with a 12-h window
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Control variables

𝐽𝐽 𝑥𝑥 = 𝑥𝑥 − 𝑥𝑥𝑏𝑏 𝑇𝑇𝐵𝐵−1 𝑥𝑥 − 𝑥𝑥𝑏𝑏 + �
𝑖𝑖=0

𝑛𝑛

𝑦𝑦𝑖𝑖 − 𝐻𝐻𝑖𝑖 𝑥𝑥𝑖𝑖 𝑇𝑇𝑅𝑅𝑖𝑖−1(𝑦𝑦𝑖𝑖 − 𝐻𝐻𝑖𝑖 𝑥𝑥𝑖𝑖 )

x: control vector
xb:  model background (short forecast)
B: background error covariance matrix
y:  observations
H[x]: Model equivalent of observations
R: Observation error covariance matrix

NWP
vorticity

divergence
temperature

surface pressure (logarithm)
specific humidity

Atmospheric Composition
aerosol mixing ratio

ozone
carbon monoxide
nitrogen dioxide
formaldehyde

sulphur dioxide
carbon dioxide

methane

AC control variables mainly treated 
as passive tracers when 
minimising the cost function. No 
emission, deposition or chemical 
reactions are modelled.
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Aerosol observations used

𝐽𝐽 𝑥𝑥 = 𝑥𝑥 − 𝑥𝑥𝑏𝑏 𝑇𝑇𝐵𝐵−1 𝑥𝑥 − 𝑥𝑥𝑏𝑏 + �
𝑖𝑖=0

𝑛𝑛

𝑦𝑦𝑖𝑖 − 𝐻𝐻𝑖𝑖 𝑥𝑥𝑖𝑖 𝑇𝑇𝑅𝑅𝑖𝑖−1(𝑦𝑦𝑖𝑖 − 𝐻𝐻𝑖𝑖 𝑥𝑥𝑖𝑖 )

Observation operator H maps model state at beginning of the 
assimilation window (t=0) to the observation time and location 

Direct assimilation of radiance observations:
The observation operator must incorporate an 
additional step to compute radiances from the 
model state variables (radiative transfer model, 
e.g. RTTOV)

CAMS is starting to explore this in the HE 
CAMEO project

Assimilation of retrievals:
Good characterization of retrieval is crucial:
• Averaging kernels
• A priori
• Error estimates
• Quality flags
CAMS currently assimilates retrievals of 
Aerosol Optical Depth
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12

MODIS

Aqua

Terra Metop-C

Metop-B

PMApVIIRS

NOAA-20

SNPP

Sentinel-3

The satellite observations are:
• AOD retrievals at 550nm
• Total atmospheric column, total aerosol
• Visible daytime only

Aerosol observations used

𝑦𝑦𝑖𝑖:
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Aerosol observation operator

𝐻𝐻𝑖𝑖 𝑥𝑥𝑖𝑖 :
AOD Observation operator (model equivalent to observations):
1. Interpolate aerosol mass mixing ratios from the individual aerosol tracers to obs location & time
2. Calculate model RH: it has an impact on hygroscopic aerosol
3. Get mass extinction coef at wavelength (e.g. 550nm) from a look-up table
4. Mutiply (3) * (1) to get single-species AODs
5. Total AOD is sum of single-species AOD 

For aerosols we are trying to minimise the difference between the 
modelled AOD and the AOD observations, whilst not moving too far 

from our background or first guess model state

Although we calculate AOD using all the 
aerosol tracers, there is not enough 

information it constrain them all and so we 
use “total aerosol” as the control variable

Model AOD AOD Obs



copernicus.eumetsat.int

14

Division of aerosol increment into tracers

Total aerosol mixing ratio

Sea salt (0.03-0.5um)

Desert dust (0.03-0.55um)

Sea salt (0.5-5um) Sea salt (5-20um) Black carbon
hydrophobic

Desert dust (0.55-9um) Desert dust (9-20um) Black carbon
hydrophilic

Organic matter
hydrophobic

Organic matter
hydrophilic

Nitrate from 
gas/particle partition

Nitrate from het. 
reactions

Ammonium

Sulphate

SOA biogenic

SOA anthropogenic

Model information from the background 
forecast (xb) is used to divide the total 
aerosol increment from the minimisation 
of the cost function back into the 
individual tracers 

• Largest contribution from dominant aerosol species
• Can not ‘create’ a tracer if not present in the background forecast
• The repartitioning of the total aerosol mixing ratio increment into the different bins can lead to 

problems with the aerosol speciation
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Why do data assimilation?

AOD data assimilation
AOD NO data assimilation

Observations

Sentinel-3 satellited on 4 June (source: 
https://www.copernicus.eu/en/media/image-
day-gallery/new-wildfire-crisis-canada).

Aeronet verification: Comparison of 
the CAMS model, with and without 
data assimilation, against independent 
in-situ aeronet stations

Updating the forecast using real-time observations improves 
the forecast, particularly when there are significant aerosol 
events that the model does not capture.






copernicus.eumetsat.int

16

Agenda

Data Assimilation
What is it and how does it work for aerosols?

Challenges of DA for aerosols
Correcting different species height profiles of 
aerosols

Emission inversions for aerosols
Can we use satellite aerosol observations to 
correct emissions? 

CAMS aerosol applications
How are the aerosol forecasts used? 
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Challenges: Speciation

Organic matter, desert dust, sea salt, sulphate

Good example Bad example

Part of fire plume is attributed to sulphate which is 
the dominant species in the background forecastCAMS aerosol alerts: 

https://aerosol-alerts.atmosphere.Copernicus.eu/

Dividing the total aerosol mixing ratio back into the individual aerosol tracers using forecast information can 
lead to issues with the speciation:
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Can using IASI retrievals improve dust forecasts?
• Godzilla event in June 2020 – large incursion of Saharan dust across the Atlantic to the Caribbean

AOD 550nm

IASI 10um

No night-time observations 

• CAMS uses AOD 550nm obs from PMAp, MODIS and VIIRS with 
overpass times at 0930, 1030 and 1330

• AOD at 550nm is in the visible spectrum and so is only measured 
in daylight hours

• Total aerosol, total column measurement

• IASI 10um measures in the infrared spectrum and so is 
available in both day- and night-time

• Onboard the Metop-B/C satellites with overpass times 
at 0930 (desc) and 2130 (asc)

• Only measures coarse particles
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Coarse dust control variable

Desert dust 
(9-20um)

Total aerosol mixing 
ratio

Sea salt (0.03-
0.5um)

Desert dust (0.03-
0.55um)

Sea salt (0.5-
5um)

Sea salt (5-
20um)

Black carbon
hydrophobic

Desert dust (0.55-
9um)

Black carbon
hydrophilic

Organic matter
hydrophobic

Organic matter
hydrophilic

Nitrate from 
gas/particle 

partition

Nitrate from 
het. reactions

Ammonium

Sulphate

SOA biogenic

SOA 
anthropogenic

Coarse dust 
mixing ratio

AOD 
550nm

IASI 10um
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Can using IASI retrievals improve dust forecasts?

AOD 550

Sulphate AODDust AOD

Total AOD

The total aerosol 
AOD increment 
calculated by the 
minimisation

The dust AOD 
increment based on 

the proportion of dust 
in the background 

forecast

The sulphate AOD 
increment based 
on the proportion 
of dust in the 
background 
forecast

Saharan dust plume over Europe in Feb 2023

The model has 
an AOD plume 

that is very 
similar to the 

satellite 
observations

Again, the division of the total increment into the individual tracers 
means the sulphate is increased, despite the fact that we know it 
is a plume of desert dust 

15th Feb 2023
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Can using IASI retrievals improve the dust forecast?

Total AOD Dust AOD Sulphate AOD

OD 10um

Total AOD Dust AOD Sulphate AOD

Reduction in sulphate plume15th Feb 2023: 0300-1500

AOD 550• Using IASI OD 10um 
observations 
reduces the 
sulphate plume

• Dust plume still 
present
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Can using IASI retrievals improve the dust forecast?

Total AOD Dust AOD Sulphate AOD

AOD 550

OD 10umAOD 550

+

Total AOD Dust AOD Sulphate AOD

Very slight reduction when using 
both OD 10um and 550nm obs

15th Feb 2023: 0300-1500

• Using IASI OD 10um 
observations 
reduces the 
sulphate plume

• Dust plume still 
present
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Can using IASI retrievals improve dust forecasts?

AOD 550nm only

OD 10um only

AOD 550nm + OD 10um
Dust
Sulphate

Dust
Sulphate

Dust
Sulphate

Sulphate dominates

Dust dominates

Mixture of bothOnly using AOD 
550nm obs leads to 
sulphate being the 
dominant species

Only using IASI 
10um obs leads to 
dust being the 
dominant species

Using both types of 
observations 
means sulphate is 
still present, but 
dust gets more 
weight

Aeronet verification at the Madrid station: different colours represent the 
different aerosol species

Saharan dust plume over Europe in Feb 2023
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Can using 3MI retrievals improve speciation?

• Launched onboard MetOp-SG-A1 on the 13th August 2025
• 3MI – Multi-viewing Multi-channel Multi-polarisation Imager

• The multiple viewing angles, wavelengths, polarisation 
channels enable additional information to be extracted 
about aerosols

AOD: Aerosol Optical Depth Standard total aerosol, total column observation
Fine and 

Coarse AOD:
Separates the AOD caused by 
fine and coarse particles

Enables aerosol species such as sulphate/fine dust 
to be constrained separately to coarse dust/sea-salt 

AAOD: Absorbing AOD Applies to absorbing aerosol species, such as black 
carbon, dust and part of organic matter

SSA: Single Scattering Albedo Identifies aerosols that are more scattering, such as 
sulphate, nitrate and sea-salt

AE: Angstrom Exponent Distinguishes different sizes of aerosols

• How to use these new observations most effectively within the CAMS data 
assimilation set-up is an interesting current research question 

See Rasmus 
Lindstrot lecture
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Challenges: Lack of profile observations

Increment created by a single AOD observation

Total aerosol mass mixing ratio at the surface
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Challenges: Lack of profile observations

Increment created by a single AOD observation

Total aerosol mass mixing ratio at the surface

Mean lengthscale of horizontal aerosol correlations

Horizontal correlation 
from the B-matrix that 
spreads the information 
from the single 
observation in the 
horizontal

• We calculate the background or model 
errors using the statistics from forecasts. 

• The aim is to capture the uncertainty we 
have in our model

• We need to update this when we change 
our model 
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Challenges: Lack of profile observations

Increment created by a single AOD observation

Total aerosol mass mixing ratio at the surface
Vertical 

increment as a 
zonal average
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Challenges: Lack of profile observations

Increment created by a single AOD observation

Total aerosol mass mixing ratio at the surface
Vertical 

increment as a 
zonal average

Standard deviation from 
the background matrix at 
the observation location

Background matrix has 
a significant impact on 

the distribution of 
information

With no profile observations, formulation of the B-matrix is very 
important for how the AOD information is distributed in the vertical
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Available operational profile observations
E-PROFILE network
• Network of lidar and ceilometer 

instruments based across 
Europe

• Profile observations of aerosol 
attenuated backscatter

• Regional and in-situ 
observations

• Operationally disseminated

MAPIR IASI 10um dust profiles
• Covered by Sophie’s lecture yesterday
• In the process of becoming operationally available
• Coarse profiles but of a specific aerosol species

EarthCARE
• Satellite observations that 

provide a profile of aerosol
• Global coverage
• In the process of becoming 

operationally available

Cloud tops and aerosols

See Sophie 
Vandenbussche 

lecture 



copernicus.eumetsat.int

30

Assimilating E-Profile data

Obs
Ctrl (AOD assimilation only)

E-PROFILE (spheres)
E-PROFILE (spheroids) 

Saharan dust storm Sept 2023 Canadian wildfires August 2024

Assimilating profile 
observations on top of AOD 
improves the profile of total 

aerosol from the model

Non-assimilated E-PROFILE station Non-assimilated E-PROFILE station
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Assimilating MAPIR IASI profile data

�y  =  ya +𝐀𝐀 y − ya + 𝜀𝜀

IASI MAPIR profile retrievals use the same methodology as data assimilation – minimize a cost 
function that contains the observations and some a-priori constraint

Retrieved value: true state y smoothed by the averaging kernel A;
ya: a-priori, ε: retrieval error 

See Antje Inness’s talk from last year’s training for further details

See Sophie 
Vandenbussche 

lecture 
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Assimilating MAPIR IASI profile data

𝑑𝑑 = 𝑦𝑦 ̂ − 𝐻𝐻(𝐱𝐱𝑚𝑚) = 𝐲𝐲𝑎𝑎 + 𝐀𝐀(𝐲𝐲 − 𝐲𝐲𝑎𝑎) + 𝜀𝜀 − 𝐻𝐻(𝐱𝐱𝑚𝑚)

�y  =  ya +𝐀𝐀 y − ya + 𝜀𝜀

IASI MAPIR profile retrievals use the same methodology as data assimilation – minimize a cost 
function that contains the observations and some a-priori constraint

Retrieved value: true state y smoothed by the averaging kernel A;
ya: a-priori, ε: retrieval error 

Without averaging kernels in observation operator 
(e.g. simple vertical integral)

See Antje Inness’s talk from last year’s training for further details

See Sophie 
Vandenbussche 

lecture 

Option 1: 
• Transform the model to match the observation units
• Interpolate to the time and location/height of the profile
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Assimilating MAPIR IASI profile data

𝑑𝑑 = 𝑦𝑦 ̂ − 𝐻𝐻(𝐱𝐱𝑚𝑚) = 𝐲𝐲𝑎𝑎 + 𝐀𝐀(𝐲𝐲 − 𝐲𝐲𝑎𝑎) + 𝜀𝜀 − 𝐻𝐻(𝐱𝐱𝑚𝑚)

�y  =  ya +𝐀𝐀 y − ya + 𝜀𝜀

IASI MAPIR profile retrievals use the same methodology as data assimilation – minimize a cost 
function that contains the observations and some a-priori constraint

Retrieved value: true state y smoothed by the averaging kernel A;
ya: a-priori, ε: retrieval error 

Without averaging kernels in observation operator 
(e.g. simple vertical integral)

See Antje Inness’s talk from last year’s training for further details

See Sophie 
Vandenbussche 

lecture 

Option 1: 
• Transform the model to match the observation units
• Interpolate to the time and location/height of the profile

Prior information has an impact 
on the difference between the 
retrieval and the model
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Assimilating MAPIR IASI profile data

𝑑𝑑 = 𝑦𝑦 ̂ − 𝐻𝐻(𝐱𝐱𝑚𝑚) = 𝐲𝐲𝑎𝑎 + 𝐀𝐀(𝐲𝐲 − 𝐲𝐲𝑎𝑎) + 𝜀𝜀 − 𝐻𝐻(𝐱𝐱𝑚𝑚)

𝑑𝑑 = 𝑦𝑦 ̂ − �𝐻𝐻(𝐱𝐱𝑚𝑚) = 𝐲𝐲𝑎𝑎 + 𝐀𝐀(𝐲𝐲 − 𝐲𝐲𝑎𝑎) + 𝜀𝜀 − (𝐲𝐲𝑎𝑎 + 𝐀𝐀(𝐻𝐻(𝐱𝐱𝑚𝑚)− 𝐲𝐲𝑎𝑎))
= 𝐀𝐀(𝐲𝐲 − 𝐻𝐻(𝐱𝐱𝑚𝑚)) + 𝜀𝜀

�y  =  ya +𝐀𝐀 y − ya + 𝜀𝜀

IASI MAPIR profile retrievals use the same methodology as data assimilation – minimize a cost 
function that contains the observations and some a-priori constraint

Retrieved value: true state y smoothed by the averaging kernel A;
ya: a-priori, ε: retrieval error 

Without averaging kernels in observation operator 
(e.g. simple vertical integral)

With averaging kernels in 
observation operator

See Antje Inness’s talk from last year’s training for further details

See Sophie 
Vandenbussche 

lecture 

Option 2: 
• Transform the model to match the observation units
• Interpolate to the time and location/height of the profile
• Remove the prior profile
• Apply the averaging kernel
• Add the prior profile
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Assimilating MAPIR IASI profile data

𝑑𝑑 = 𝑦𝑦 ̂ − 𝐻𝐻(𝐱𝐱𝑚𝑚) = 𝐲𝐲𝑎𝑎 + 𝐀𝐀(𝐲𝐲 − 𝐲𝐲𝑎𝑎) + 𝜀𝜀 − 𝐻𝐻(𝐱𝐱𝑚𝑚)

𝑑𝑑 = 𝑦𝑦 ̂ − �𝐻𝐻(𝐱𝐱𝑚𝑚) = 𝐲𝐲𝑎𝑎 + 𝐀𝐀(𝐲𝐲 − 𝐲𝐲𝑎𝑎) + 𝜀𝜀 − (𝐲𝐲𝑎𝑎 + 𝐀𝐀(𝐻𝐻(𝐱𝐱𝑚𝑚)− 𝐲𝐲𝑎𝑎))
= 𝐀𝐀(𝐲𝐲 − 𝐻𝐻(𝐱𝐱𝑚𝑚)) + 𝜀𝜀

�y  =  ya +𝐀𝐀 y − ya + 𝜀𝜀

IASI MAPIR profile retrievals use the same methodology as data assimilation – minimize a cost 
function that contains the observations and some a-priori constraint

Retrieved value: true state y smoothed by the averaging kernel A;
ya: a-priori, ε: retrieval error 

Without averaging kernels in observation operator 
(e.g. simple vertical integral)

With averaging kernels in 
observation operator

See Antje Inness’s talk from last year’s training for further details

See Sophie 
Vandenbussche 

lecture 

Option 2: 
• Transform the model to match the observation units
• Interpolate to the time and location/height of the profile
• Remove the prior profile
• Apply the averaging kernel
• Add the prior profile

No longer any impact of the 
prior and the comparison now 
becomes between the model 
value and the “truth”
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Assimilating MAPIR IASI profile data

𝑑𝑑 = 𝑦𝑦 ̂ − 𝐻𝐻(𝐱𝐱𝑚𝑚) = 𝐲𝐲𝑎𝑎 + 𝐀𝐀(𝐲𝐲 − 𝐲𝐲𝑎𝑎) + 𝜀𝜀 − 𝐻𝐻(𝐱𝐱𝑚𝑚)

𝑑𝑑 = 𝑦𝑦 ̂ − �𝐻𝐻(𝐱𝐱𝑚𝑚) = 𝐲𝐲𝑎𝑎 + 𝐀𝐀(𝐲𝐲 − 𝐲𝐲𝑎𝑎) + 𝜀𝜀 − (𝐲𝐲𝑎𝑎 + 𝐀𝐀(𝐻𝐻(𝐱𝐱𝑚𝑚)− 𝐲𝐲𝑎𝑎))
= 𝐀𝐀(𝐲𝐲 − 𝐻𝐻(𝐱𝐱𝑚𝑚)) + 𝜀𝜀

�y  =  ya +𝐀𝐀 y − ya + 𝜀𝜀

IASI MAPIR profile retrievals use the same methodology as data assimilation – minimize a cost 
function that contains the observations and some a-priori constraint

Retrieved value: true state y smoothed by the averaging kernel A;
ya: a-priori, ε: retrieval error 

Without averaging kernels in observation operator 
(e.g. simple vertical integral)

With averaging kernels in 
observation operator

• We remove the influence of the a-priori profile if we use the averaging kernel to sample the model profile 
according to the assumptions made in the retrieval

• The model data is smoothed by the averaging kernel to produce a profile or column that is directly 
comparable to the product derived from the instrument radiances

• We still need to know ya and A in the observation operator calculations

See Antje Inness’s talk from last year’s training for further details

See Sophie 
Vandenbussche 

lecture 
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Agenda

Data Assimilation
What is it and how does it work for aerosols?

Challenges of DA for aerosols
Correcting different species height profiles of 
aerosols

Emission inversions for aerosols
Can we use satellite aerosol observations to 
correct emissions? 

CAMS aerosol applications
How are the aerosol forecasts used? 
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Emission inversion

• Samuel Remy has already talked comprehensively about the importance of 
emissions as an input parameter to aerosol models

• Some of the relevant aerosol emissions come from emission inventories, such 
as SO2

• Other emissions are calculated online based on wind (dust or sea salt aerosol) 
or temperature (biogenic emissions)

• Some emissions can be observed indirectly from satellite instruments (Fire 
radiative power, burnt area, volcanic plumes)

• “Inverse” methods can be used to correct prior emission estimates using 
observations of concentrations and models

See Samuel 
Remy lecture 
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Including emissions in the control vector

12-hr DA 
window

NWP 4D-Var is mostly 
defined as an initial value 
problem. Only initial 
conditions are changed, 
and model error is 
relatively small

Remember: aerosol 
treated as a passive 
tracer

Emissions assumed constant 
over the 12hr window
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Including emissions in the control vector

NWP 4D-Var is mostly 
defined as an initial value 
problem. Only initial 
conditions are changed, 
and model error is 
relatively small

How to improve?

Use the data assimilation 
system to adjust surface 
fluxes at the same time 
as the initial conditions 

12-hr DA 
window

Remember: aerosol 
treated as a passive 
tracer
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Joint state/emissions 4D-var inversion system

𝐽𝐽 𝑥𝑥, 𝑝𝑝 = 𝑥𝑥 − 𝑥𝑥𝑏𝑏 𝑇𝑇𝐵𝐵−1 𝑥𝑥 − 𝑥𝑥𝑏𝑏 + 𝑝𝑝 − 𝑝𝑝𝑏𝑏 𝑇𝑇𝐵𝐵𝑝𝑝−1 𝑝𝑝 − 𝑝𝑝𝑏𝑏

          +    ∑𝑖𝑖=0𝑛𝑛 𝑦𝑦𝑖𝑖 − 𝐻𝐻𝑖𝑖 𝑥𝑥𝑖𝑖 ,𝑝𝑝 𝑇𝑇𝑅𝑅𝑖𝑖−1(𝑦𝑦𝑖𝑖 − 𝐻𝐻𝑖𝑖 𝑥𝑥𝑖𝑖 ,𝑝𝑝 )

Jb: background constraint for x Jp: constraint for emission scaling factors 

Jo:  observation constraint

Parameter (e.g. scaling factors)State control vector

• Joint optimisation of emissions and initial conditions
• Optimised emissions for dust
• TL/AD of simplified dust emissions; currently no dust emissions are included within the 

minimisation process
• 2D scaling factors p applied to emission fields
• Prior error definition:

• Global constant or 2D map of standard error
• Spatial correlation length scale (via Bp) 
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Scaled emissions

• Untangling the signal from total AOD into the emissions for a specific tracer would be very 
complicated, if not impossible

• More feasible is using specific aerosol species observations to constrain the emissions of that species
• VIIRS dust flagged AOD observations used to produce scaling factors for IFS dust emissions as part of 

the CAMAERA HE project 
• IASI 10um AOD would also be another option, since it targets coarse dust.

Yearly averaged dust emissions for 2017 Yearly averaged emission increments 
for 2017 due to scaling factors

HE CAMAERA project results
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Agenda

Data Assimilation
What is it and how does it work for aerosols?

Challenges of DA for aerosols
Correcting different species height profiles of 
aerosols

Emission inversions for aerosols
Can we use satellite aerosol observations to 
correct emissions? 

CAMS aerosol applications
How are the aerosol forecasts used? 



copernicus.eumetsat.int

44

Forecasts (aerosol alert service)

https://atmosphere.copernicus.eu/charts/packages/cams/

Organic matter, desert dust, sea salt, sulphate

CAMS aerosol alerts: 
https://aerosol-alerts.atmosphere.Copernicus.eu/

• CAMS produces two five-day forecasts every day
• These start from initial conditions at 0300 and 

1500 calculated through data assimilation 
• They are freely available from the CAMS website

• The CAMS aerosol alert service provides daily warnings 
for significant events like forest fires, dust storms, and 
intense anthropogenic pollution episodes

• Register to the service and get specific warnings tailored 
to your requirements

https://atmosphere.copernicus.eu/charts/packages/cams/
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Surface air quality (policy support)

https://atmosphere.copernicus.eu/policy-tools

• Air quality is a very important aspect of the 
work of CAMS

• Surface quantity, which is impacted by short- 
and long-range aerosols

• PM10 – Particulate Matter smaller than 10um

• CAMS provides policy tools to help identify 
the source, sector and quantity of PM
• Chemical species of aerosol
• Country impact/contribution
• Sector apportionment
• Policy scenarios
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Summary and conclusions
Using observations to 
update forecasts keeps 
models close to reality

Correctly estimating and 
understanding the uncertainty 

in both the model and the 
observations is very important
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Summary and conclusions
Using observations to 
update forecasts keeps 
models close to reality

Challenges still remain to 
adjust the individual 

aerosol species and the 
profiles of aerosolsCorrectly estimating and 

understanding the uncertainty 
in both the model and the 

observations is very important
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Summary and conclusions
Using observations to 
update forecasts keeps 
models close to reality

Challenges still remain to 
adjust the individual 

aerosol species and the 
profiles of aerosols

There is the potential to 
improve emissions as well 

as initial conditions 
through observations

Correctly estimating and 
understanding the uncertainty 

in both the model and the 
observations is very important



copernicus.eumetsat.int

49

Summary and conclusions
Using observations to 
update forecasts keeps 
models close to reality

Challenges still remain to 
adjust the individual 

aerosol species and the 
profiles of aerosols

There is the potential to 
improve emissions as well 

as initial conditions 
through observations

Correctly estimating and 
understanding the uncertainty 

in both the model and the 
observations is very important

Accurate, verified 
forecasts can support 

users and policy
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Thank you!
Questions are welcome.
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