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✓ What is the source inversion?
✓ Cost function 
✓ Minimization

✓ How to solve source inversion problems…
• idealized examples
• real atmosphere

✓ Why VOCs matter?
✓ From HCHO to VOCs : an example from the real atmosphere
✓ Satellite observations of HCHO 
✓ Top-down VOC emissions from pyrogenic and biogenic sources
✓ Satellite-based trends
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In the nutshell: source inversion uses observations to determine emissions

Atmospheric model

+ optimisation methods 

Adjusted 
emissions

Emission 
inventory

Satellite data



Oomen, Choi, Yu et al., Elementa, in review

Ingredients for inferring 
top-down emissions



f  = parameters to be optimized
fB = first guess value for control parameters
y  = atmospheric observations
E  = matrix of errors on observations
B  = matrix of errors on a priori fluxes 

H(f)y

Adjust emission distributions to 
best reproduce the observations 

Cost function J : measure of the mismatch between model and data

y H(f)

Stavrakou et al. 2015

Opacka et al. 2025

A priori emission distributions

Optimised emission distributions

TROPOMI NO2 column A priori model NO2 column

1015 molec.cm-2



Minimum of the cost function?

The cost function J is an example of complex numerical algorithm consisting in a composition of 
differentiable mappings

Minimum ? Gradient of J=0

J(x) projections 
on parameter
plane:  elliptic
iso-cost lines
with axis lengths
determined by 
gradJ and by the 
uncertainty and 
error covariance 
of xopt

Minimum of the cost function?Minimum of the cost function?

Example of cost function defined in a 2d-parameter 
space



✓ No transport, 
constant sink, 
1 source

Learning how to solve an inversion problem!

✓ Transport, 
constant sink, 
2 sources

✓ Seasonal variation 
of emission sources, 
2 sources 



The simplest source inversion problem: No transport, constant sink, 1 source

o Uniform flux F of compound A

o A + OH  → rate k=10-11 molec-1cm3 s-1, [OH]=106 molec.cm-3

o PBL : assumed well-mixed at all times (z=105 cm)
o Air number density (n) is constant (n=2.5x1019 molec.cm-3) 

Forward problem : 

- What is the resulting vertical column V of A ? 
- What is the average mixing ratio (μ)? 

V = F / (k . [OH])  → V = 1015 molec.cm-2

μ = V / n . z → μ = 400 pptv

Inverse problem : 

What is the top-down flux F? 

o 3 measurements μ1
o=450 pptv, μ2

o=390 pptv, μ3
o=330 pptv, Δμo= 20 pptv

o A priori flux estimate : Fo = 5x109 molec.cm-2s-1, uncertainty=100%
o Uncertainties in n, z, k and [OH] lead to additional uncertainty on modelled

mixing ratio of Δμm=50 pptv

F = 1010 molec.cm-2s-1

o A priori mixing ratio : μ o
= Fo / n . z . k . [OH] = 200 pptv

o Set: F = Fo . f,  f= dimensionless adjustable parameter
fo=1

Δf = 1 (=100%) 

(Δμ)2 = (Δμo)2 + (Δμm)2 = 
(202 + 502) pptv2F = Fo . f = 

= 9.64 x109 molec.cm-2s-1

 Very close to the true flux! 



A bit more complicated: Constant transport, constant sink, 2 sources to retrieve

o Background source F=1010 molec.cm-2s-1 + local source 

generating an enhancement μe=1 ppbv of  compound A

o Constant horizontal wind : u = 5 m/s
o Measurements at sites 1,2,3 downwind, at d1=200 km, 

d2=500 km and d3=1000 km

Forward problem: What is the mixing ratio (μ) at each site?
o μ = μb + μe, with μb = F / (n . z . k . [OH]) = 400 pptv (as before)
o μe  = 1 ppbv . e –(d/u) . k .[OH] 

→ μe  (1) =  670 pptv, μe  (2) = 368 pptv,  μe  (3) = 135 pptv

μ (1) = 1070 pptv
μ (2) = 768 pptv
μ (3) = 535 pptv

✓ Assume : μ1
o=1100 pptv, μ2

o=750 pptv, μ3
o=500 ppt

✓ Combined measurement/model uncertainty : Δμ=100 pptv
✓ Fo = 5x109 molec.cm-2s-1, uncertainty=100%
✓ A priori mixing ratio enhancement : μeo = 2 ppbv, 100% error

Inverse problem : 

What are the flux F and mixing ratio μe? 

o F = Fo . f1, μe = μeo . f2 with a priori f1= f2 =1, Δf1=Δf2 = 1

μi
mod(f) = (Fo . f1 / (n . z . k . [OH])) + (μeo . f2

. e –(d
i
/u) . k .[OH] ) =>

μ1
mod = 200 . f1+ 1340 . f2

μ2
mod = 200 . f1+ 736 . f2

μ3
mod = 200 . f1+ 270 . f2

F= 7.575 x 109 molec.cm-2 s-1& μe = 1.206 ppbv



One step further : Retrieve 2 sources with different seasonality
o Compound A has a constant anthropogenic source (Fant), and a biogenic

source (Fbio) with a seasonality peaking in summer
o Fant =1010 molec.cm-2s-1

o Fbio(spring) = 1010 molec.cm-2s-1 

o Fbio(summer) = 3x1010 molec.cm-2s-1

o μ (spring) = (Fant + Fbio (spring)) / (n . z . k . [OH]) = 0.8 ppbv
o μ (summer) = (Fant + Fbio (summer)) / (n . z . k . [OH]) = 1.6 ppbv

o Assume μ1
o=0.8 ppbv in spring, μ2

o =1.6 ppbv in summer, Δμ =0.2 ppbv
o No correlation btw anthropogenic and biogenic source
o Correlation btw errors on biogenic source in spring and summer

Inverse problem : 

What is the top-down 
flux Fant and Fbio ? 

o Fant = 2x1010 . f1, Fbio(spring) = 1010 . f2 , Fbio(summer) = 2x1010 . f3 with f1= f2 = f3 = 1, Δf1=1, Δf2 = Δf3 = 2/√3

o Correlation between f2 and f3 is c=0.5

Fant = 1.33x1010, Fbio (spring) = 0.76x1010, Fbio (summer) = 2.6x 1010   

μ1
mod = 0.839 ppbv, μ2

mod = 1.579 ppbv

Very close to the real values!



And in the real atmosphere?

Same formula! 

o y : chemical observations from satellite, ground-based, airborne…
o H(f) : global or regional CTM
o E : errors of the retrievals (systematic/random)
o B : based on spatiotemporal correlations

In numbers…

Even when we use satellite measurements to 
constrain the fluxes, we have fewer observations 
(12 x 144 x 90 x 0.3 ~ 50,000)  than parameters to 
optimize → Underdetermined problem

o Global CTM (2°x2.5°, 144 longitudes x 90 latitudes)
o Optimize monthly fluxes of compound A 
o 3 emission sources (e.g. biogenic, pyrogenic, anthropogenic)
o # f’s : 12 x 144 x 90 x 3 x 0.3 ~140,000 parameters to optimize

Reduce the number of effective 
variables by omitting cells with very

low a priori flux, and by using a 
correlation setup in matrix B



o Broad variety of fastly reacting species
o Influence atmospheric composition : 

contribute to O3 & PM formation
o Influence radiation, clouds, air quality
o Influence human health & climate : 

precursors of SOA, affect GHG

NMVOCs : why do they matter?

Annual emission : ~1000 TgC
(isoprene~500 TgC), but large 

uncertainties!
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Model simulation with NMVOCs

Model simulation neglecting NMVOCs

In the presence of VOCs → strong
increases of surface ozone levels in the 
Northern Hemisphere, up to factor of 2 
increase in eastern US, Europe and China

Impact of NMVOC precursors on surface ozone levels



HCHO : the most abundant carbonyl in the atmosphere

✓ Short-lived - lifetime 
on the order of a 
few hours

✓ Directly emitted 
from fossil fuel 
combustion and 
biomass burning

✓ Also formed as a 
high-yield 
secondary product 
in the CH4, and 
NMVOC oxidation

CH4

+OH

HCHO

+HO2

CH3O2

NMVOC

RO2

CH3OOH
+OH +OH

NO

+OH

CO+2 HO2

CO+H2

CO+HO2+H2O

deposition

many

steps

NMVOCs



Infer top-down 

o pyrogenic VOC emissions

o biogenic VOC emissions

based on MAGRITTE global CTM 
and its adjoint (4D-Var)

TROPOMI/S5p provides 
daily global measurements 
of HCHO at high spatial 
resolution (3.5 km × 5.5 
km)

Period: 2017-present



HCHO : high-yield product in isoprene
oxidation

Total : 65 Tg / year

others

22%

CH3COOH

14%

CH3OH

12%
HCOOH

8%

C2H4

8%

CH2O

7%

2,3-butanedione

5%

arom

5%

CH3CHO

4%

C2H6

4%

acetone

4%

C3H6

3%

MEK

2%

C2H2

2%

NMVOC emission from biomass burning

Focus on pyrogenic and biogenic sources



BB datasets Relies on

GFED4s MODIS burnt area + active fires

FINN MODIS active fire counts + active fires 

GFAS Assimilated MODIS FRP

FEER As in GFAS, constrained by MODIS AOD

QFED MODIS FRP + AOD

SEEDS Top-down, based on HCHO data

o Uncertainties due to detection of burnt area, FRP, emission factors, biome types, fuel consumption +  
difficulty to account for understory fires, peatland fires → hampers our understanding of fire impacts 

▪ Factor of ~4 
between 
global bottom-
up estimates, 
larger 
differences at 
regional scale

Is satellite HCHO 
an alternative way 
to constrain 
biomass burning 
emissions?

Large differences between bottom-up inventories!

▪ Inventories perform differently 
depending on species, season, location



QFED

Top-down

2018 2019

2021 20222020

Fire emissions (Tg/yr) 2018 2019 2020 2021 2022

A priori 1.6 2.5 2.6 1.7 2.0

Top-down 2.1 3.5 2.9 1.7 1.8

Emission enhancements: average May-September

Oomen et al. 2024



o Top-down 
emissions are 
lower than all 
inventories

o The peak on 6 Aug 
is well captured in 
all datasets, except 
for GFED 

o The top-down 
peak is x2-3 lower 
than QFED/GFAS, 
could be due to 
the export of 
pollution due to 
strong winds

Top-down emissions during an extreme event



✓ ~Half of Ukraine is 
cultivated area, 
70% of land is 
dedicated to 
agricultural use

✓ Due to the small 
size of cropland 
fires, satellite burnt 
area is often 
underestimated

✓ SEEDS estimates 
are factor of 1.5-2 
higher on average 
than QFED, GFAS 
estimates are the 
lowest  

Underestimated cropland burning in Ukraine/Russia

Oomen et al. 2024
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Ukraine/Russia fires TgC
(5-yr mean)

A priori (QFED) 5.9

GFED 3.7

GFAS 2.5

Top-down (SEEDS) 11.2

The share of top-down crop residue 
burning in Ukraine accounts for half of 
the total flux estimate in the European 
domain; Increased wrt to the a priori 

Yearly Crop Burning Flux (Tg VOC) in Ukraine/Russia

Top-down

A priori

A priori Top-down 

(SEEDS)

2018-2022 
average

✓ Small fires are 
underrepresented in 
inventories, due to 
difficulties to map 
burnt area from 
satellites

Agr.. 

Crop residue burning in Ukraine

✓ Top-down 
products offer an 
alternative 
estimate 
consistent with 
chemical 
observations, 
independent of 
fire proxies 



MEGAN-SURFEX CAMS-GLOB-BIOv3.1 (Sindelarova et al. 2022)

MEGAN-MOHYCAN (Stavrakou et al. 2018)

2.10 Tg

1.07 Tg1.23 Tg

Biogenic BVOCs from the bottom-up perspective

Sindelarova et al. 2022

✓ Natural emissions from vegetation are 
currently poorly constrained

✓ Large source of uncertainty in models

✓ In Europe, large 
differences found 
even among 
inventories built 
on the same 
emission model 
(MEGAN)



…and from the satellite perspective
TROPOMI (observed) A priori MAGRITTE model Optimised MAGRITTE model

Inver

sion
A priori 

emissions
Optimized 
(top-down) 
emissions

18.5 Tg8.1 Tg

Oomen et al. 2024
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o Africa is one of the largest source of biogenic hydrocarbons (BVOC) and NO emissions 
from soils into the atmosphere

o BVOCs : key drivers of tropospheric chemistry through their impacts on O3, aerosols, 
methane lifetime

o Tropical forests modulate anthropogenic climate change, by partially causing it through 
deforestation, by buffering it through the land carbon sink

o Scarce local measurements → large uncertainties in BVOC

o Satellite data can inform on the distribution and strength of anthropogenic & natural 
sources at an unprecedented spatial scale, combined with models and inverse techniques



Satellite NO2 and HCHO data can inform about emission sources!

Inverse methods   

Very close agreement 
with observations 
achieved by significant 
emission changes

Opacka et al. 2025



Significant emission changes!

SOIL

LIGHTNING

ISOPRENE

*185 Tg when NO2 is not used to 
constrain the inversion 

INCREMENT

TOP-DOWNA PRIORI

TOP-DOWN ISOPRENE, 
CONSTRAINED BY HCHO ONLY

185 Tg

1.9 
TgN

2.4
TgN

125 Tg

2.0 
TgN

BIOMASS 
BURNING

0.5 
TgN

162* Tg

A PRIORI TOP-DOWN INCREMENT



Evaluation against CrIS isoprene columns

TOP-DOWN, CONSTRAINED 
BY HCHO ONLY

A priori spatial patterns are more 
contrasted than in the observations

Compared to the joint 
inversion, increased 
columns by 40%. This is 
due to lower NOx 
fluxes, lower OH levels 
and longer isoprene 
lifetimes in HCHO-only 
inversion

TOP-DOWN, JOINT 
INVERSION

A PRIORI MODEL 
ISOPRENE COLUMNS

CrIS ISOPRENE 
COLUMNS

Improved agreement 
with CrIS in the joint 
inversion (-33% → -
10%), improved 
spatial distribution

Opacka et al. 2025



Inferred VOC emission fluxes on global scale using TROPOMI

490 Tg y-1

93 Tg y-1

228 Tg y-1Sfendla et al. in review

1015 molec.cm-2



Müller et al. 2024
Stavrakou et al. 2018

Satellite-based trends

Clear evidence of a significant impact of climate variability over BVOC-dominated regions

2005-2015

Inversion based
on OMI HCHO  
over 2005-2017

OMI   A priori 
Optimised

PIRAMID



Other top-down approaches 
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Take-home messages

o Use of satellite data to learn about emission sources and their evolution, and 
to interpret the observed long-term satellite trends 

o TROPOMI HCHO suggest increased fire fluxes from crop residue burning wrt 
bottom-up inventories and changes in spatial distribution of biogenic 
sources → geostationary observations offer promise to better determine 
these emissions

o Co-occurrence of sources (fires and enhanced vegetation emissions) during 
summertime makes it challenging to separate the sources

o Need for improved representation of pyrogenic and biogenic VOCs in 
models

o Inverse methods allow for a large array of applications & improved 
assessments of air quality (compounded by independent ground/satellite 
observations)
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