

Outline

- ✓ What is the source inversion?
- ✓ Cost function
- √ Minimization
- ✓ How to solve source inversion problems...
 - idealized examples
 - real atmosphere
- √ Why VOCs matter?
- √ From HCHO to VOCs: an example from the real atmosphere
- ✓ Satellite observations of HCHO
- √ Top-down VOC emissions from pyrogenic and biogenic sources
- ✓ Satellite-based trends

In the nutshell: source inversion uses observations to determine emissions

Ground-based: Offers continuous time series of species (in situ or column) at fixed locations

Bottom-up emissions

Sonde: Supplies in situ vertical profiles through the atmosphere

Aircraft: Captures atmospheric composition across altitude ranges during campaigns.

Satellite: Provides columns of trace gases over wide areas and extended periods. e.g. OMI, TROPOMI, CrIS, TES, GEMS, TEMPO, Sentinel-4

Ingredients for inferring top-down emissions

Cost function J: measure of the mismatch between model and data

Opacka et al. 2025

A priori emission distributions

$$G_0(x,t) = \sum_{j=1}^m \Phi_j(x,t)$$

Optimised emission distributions

$$G(x,t) = \sum_{j=1}^{m} \exp(f_j) \cdot \Phi_j(x,t)$$

$$J(\mathbf{f}) = J_{\text{OBS}}(\mathbf{f}) + J_{B}(\mathbf{f})$$
$$= \frac{1}{2} \left[(H(\mathbf{f}) - \mathbf{y})^{T} \mathbf{E}^{-1} (H(\mathbf{f}) - \mathbf{y})^{T} + \mathbf{f}^{T} \mathbf{B}^{-1} \mathbf{f} \right]$$

f = parameters to be optimized

 f_B = first guess value for control parameters

y = atmospheric observations

E = matrix of errors on observations

B = matrix of errors on a priori fluxes

Adjust emission distributions to best reproduce the observations

Minimum of the cost function?

The cost function J is an example of complex numerical algorithm consisting in a composition of differentiable mappings

$$J(f) = J_{obs}(f) + J_B(f)$$

$$= \frac{1}{2} \sum_{i=1}^{p} (\boldsymbol{H}_i(f) - \boldsymbol{y}_i)^T \mathbf{E}^{-1} (\boldsymbol{H}_i(f) - \boldsymbol{y}_i)$$

$$+ \frac{1}{2} (f - f_B)^T \mathbf{B}^{-1} (f - f_B),$$

$$(\nabla J)_f = \sum_{i=1}^p (D\mathbf{H}_i)_f^T \mathbf{E}^{-1} (\mathbf{H}_i(f) - \mathbf{y}_i)$$
$$+ \mathbf{B}^{-1} (f - f_B)$$

Minimum ? Gradient of J=0

Example of cost function defined in a 2d-parameter space

J(x) projections on parameter plane: elliptic iso-cost lines with axis lengths determined by gradJ and by the uncertainty and error covariance of x_{opt}

Learning how to solve an inversion problem!

✓ No transport, constant sink, 1 source

✓ Transport,constant sink,2 sources

✓ Seasonal variation of emission sources,2 sources

The simplest source inversion problem: No transport, constant sink, 1 source

- Uniform flux F of compound A
- A + OH \rightarrow rate k=10⁻¹¹ molec⁻¹cm³ s⁻¹, [OH]=10⁶ molec.cm⁻³
- PBL: assumed well-mixed at all times (z=10⁵ cm)
 - Air number density (n) is constant $(n=2.5\times10^{19} \text{ molec.cm}^{-3})$

Forward problem:

- What is the resulting vertical column V of A?
- What is the average mixing ratio (μ)?

$$V = F / (k \cdot [OH]) \rightarrow V = 10^{15} \text{ molec.cm}^{-2}$$

 $\mu = V / n \cdot z \rightarrow \mu = 400 \text{ pptv}$

- \circ 3 measurements $\mu_0^1 = 450$ pptv, $\mu_0^2 = 390$ pptv, $\mu_0^3 = 330$ pptv, $\Delta \mu_0 = 20$ pptv
- A priori flux estimate : $F_0 = 5x10^9$ molec.cm⁻²s⁻¹, uncertainty=100%
- $_{\odot}$ Uncertainties in n, z, k and [OH] lead to additional uncertainty on modelled mixing ratio of $\Delta\mu_m{=}50$ pptv

<u>Inverse problem :</u>

What is the top-down flux F?

- A priori mixing ratio : $\mu_o = F_o / n \cdot z \cdot k \cdot [OH] = 200 \text{ pptv}$
- \circ Set: $F = F_o \cdot f$, f = dimensionless adjustable parameter

$$J = \frac{1}{2} \sum_{1}^{3} (\frac{\mu_{\text{mod}}(f) - \mu_{\text{o}}^{i}}{\Delta \mu})^{2} + \frac{1}{2} (\frac{f - f_{0}}{\Delta f})^{2}$$

$$\Delta f = \frac{1}{2} \sum_{1}^{3} (\frac{\mu_{\text{mod}}(f) - \mu_{\text{o}}^{i}}{\Delta \mu})^{2} + \frac{1}{2} (\frac{f - f_{0}}{\Delta f})^{2}$$

$$\Delta f = 1 \ (=100\%)$$

$$\frac{\partial J}{\partial f} = \frac{200}{\Delta \mu^2} \sum_{1}^{3} 200 \cdot (200 \cdot f - \mu_o^i) + (f - 1) = 0 \Rightarrow f = 1.927$$

$$F = F_o \cdot f =$$
= 9.64 x 10⁹ molec.cm⁻²s⁻¹
Very close to the true flux!

$$(\Delta \mu)^2 = (\Delta \mu_o)^2 + (\Delta \mu_m)^2 =$$

(20² + 50²) pptv²

A bit more complicated: Constant transport, constant sink, 2 sources to retrieve

- O Background source $F=10^{10}$ molec.cm⁻²s⁻¹ + local source generating an enhancement $\mu_e=1$ ppbv of compound A
- Constant horizontal wind : u = 5 m/s
- Measurements at sites 1,2,3 downwind, at $d_1=200$ km, $d_2=500$ km and $d_3=1000$ km

Forward problem: What is the mixing ratio (μ) at each site?

- $\mu_e = 1 \text{ ppbv} \cdot e^{-(d/u) \cdot k \cdot [OH]} \rightarrow \mu_e$ (1) = 670 pptv, μ_e (2) = 368 pptv, μ_e (3) = 135 pptv

$$\mu(1) = 1070 \text{ pptv}$$

- $\mu(2) = 768 \text{ pptv}$
 - $\mu(3) = 535 \text{ pptv}$

- ✓ Assume : $\mu_0^1 = 1100$ pptv, $\mu_0^2 = 750$ pptv, $\mu_0^3 = 500$ ppt
- ✓ Combined measurement/model uncertainty : $\Delta \mu = 100$ pptv
- \checkmark F_o = 5x10⁹ molec.cm⁻²s⁻¹, uncertainty=100%
- ✓ A priori mixing ratio enhancement : μ_{eo} = 2 ppbv, 100% error

o F = F₀ . f_1 $\mu_{e} = \mu_{eo}$. f_2 with a priori $f_1 = f_2 = 1$, $\Delta f_1 = \Delta f_2 = 1$

Inverse problem:

What are the flux F and mixing ratio μ_e ?

$$J = \frac{1}{2} \sum_{1}^{3} \left(\frac{\mu_{\text{mod}}(f) - \mu_{\text{o}}^{i}}{\Delta \mu} \right)^{2} + \frac{1}{2} \left(\frac{f_{1} - f_{0}}{\Delta f_{1}} \right)^{2} + \frac{1}{2} \left(\frac{f_{2} - f_{0}}{\Delta f_{2}} \right)^{2}$$

$$\begin{split} \mu^{i}_{mod}(f) &= (F_{o} \cdot f_{1} / (n \cdot z \cdot k \cdot [OH])) + (\mu_{eo} \cdot f_{2} \cdot e^{-(d_{i}/u) \cdot k \cdot [OH]}) => \\ \mu^{1}_{mod} &= 200 \cdot f_{1} + 1340 \cdot f_{2} \\ \mu^{2}_{mod} &= 200 \cdot f_{1} + 736 \cdot f_{2} \\ \mu^{3}_{mod} &= 200 \cdot f_{1} + 270 \cdot f_{2} \end{split}$$

$$\frac{\partial J}{\partial f_1} = \frac{\partial J}{\partial f_2} = 0 \Rightarrow f_1 = 1.515, f_2 = 0.603$$

 $F = 7.575 \times 10^9 \text{ molec.cm}^{-2} \text{ s}^{-1} \& \mu_e = 1.206 \text{ ppbv}$

One step further: Retrieve 2 sources with different seasonality

Ocompound A has a constant anthropogenic source (F_{ant}), and a biogenic source (F_{bio}) with a seasonality peaking in summer

$$\circ$$
 $F_{ant} = 10^{10} \text{ molec.cm}^{-2}\text{s}^{-1}$

- \circ F_{bio}(spring) = 10¹⁰ molec.cm⁻²s⁻¹
- \circ F_{bio}(summer) = 3x10¹⁰ molec.cm⁻²s⁻¹
- o $\mu (spring) = (F_{ant} + F_{bio (spring)}) / (n \cdot z \cdot k \cdot [OH]) = 0.8 ppbv$
- ο μ (summer) = (F_{ant} + F_{bio (summer)}) / (n · z · k · [OH]) = 1.6 ppbv

- O Assume $\mu_0^1 = 0.8$ ppbv in spring, $\mu_0^2 = 1.6$ ppbv in summer, $\Delta \mu = 0.2$ ppbv
- No correlation btw anthropogenic and biogenic source
- Correlation btw errors on biogenic source in spring and summer

<u>Inverse problem :</u>

What is the top-down

flux F_{ant} and F_{bio}?

○
$$F_{ant} = 2x10^{10} \cdot f_1$$
, $F_{bio}(spring) = 10^{10} \cdot f_2$, $F_{bio}(summer) = 2x10^{10} \cdot f_3$ with $f_1 = f_2 = f_3 = 1$, $\Delta f_1 = 1$, $\Delta f_2 = \Delta f_3 = 2/\sqrt{3}$

○ Correlation between f_2 and f_3 is c=0.5

$$J = \frac{1}{2} \sum_{i} (\frac{\mu_{\text{mod}}(f) - \mu_{\text{o}}^{i}}{\Delta \mu})^{2} + \frac{1}{2} \sum_{j=1}^{3} \sum_{k=1}^{3} (f_{j} - 1) B_{jk}^{-1}(f_{k} - 1)$$

$$\begin{pmatrix} \Delta \mathbf{f_{l}}^{2} & 0 \\ 0 & \Delta \mathbf{f_{2}}^{2} & c \Delta \mathbf{f_{2}} \\ 0 & c \Delta \mathbf{f_{2}} \Delta \mathbf{f_{3}} \end{pmatrix}$$

$$\frac{\partial J}{\partial f_1} = \frac{\partial J}{\partial f_2} = \frac{\partial J}{\partial f_3} = 0 \Rightarrow f_1 = 0.66, f_2 = 0.76, f_3 = 1.31$$

$$\downarrow \mu^1_{mod} = 0.839 \text{ ppbv, } \mu^2_{mod} = 1.579 \text{ ppbv}$$

Very close to the real values!

And in the real atmosphere?

Same formula!

$$J = \frac{1}{2}(H(f) - y)^T E^{-1}(H(f) - y) + \frac{1}{2}(f - f_B)^T B^{-1}(f - f_B)$$

- \circ y: chemical observations from satellite, ground-based, airborne...
- *H*(*f*): global or regional CTM
- E: errors of the retrievals (systematic/random)
- B: based on spatiotemporal correlations

In numbers...

- Global CTM (2°x2.5°, 144 longitudes x 90 latitudes)
- Optimize monthly fluxes of compound A
- 3 emission sources (e.g. biogenic, pyrogenic, anthropogenic)
- \circ # f's: 12 x 144 x 90 x 3 x 0.3 ~140,000 parameters to optimize

Even when we use satellite measurements to constrain the fluxes, we have fewer observations (12 x 144 x 90 x 0.3 \sim 50,000) than parameters to optimize \rightarrow Underdetermined problem

Reduce the number of effective variables by omitting cells with very low a priori flux, and by using a correlation setup in matrix B

NMVOCs: why do they matter?

- Broad variety of fastly reacting species
- Influence atmospheric composition :
 contribute to O₃ & PM formation
- Influence radiation, clouds, air quality
- Influence human health & climate: precursors of SOA, affect GHG

Annual emission: ~1000 TgC (isoprene~500 TgC), but large uncertainties!

Impact of NMVOC precursors on surface ozone levels

In the presence of VOCs → strong increases of surface ozone levels in the Northern Hemisphere, up to factor of 2 increase in eastern US, Europe and China

HCHO: the most abundant carbonyl in the atmosphere

✓ Short-lived - lifetime on the order of a few hours

 Directly emitted from fossil fuel combustion and biomass burning

✓ Also formed as a high-yield secondary product in the CH₄, and NMVOC oxidation

Focus on pyrogenic and biogenic sources

HCHO: high-yield product in isoprene oxidation

Large differences between bottom-up inventories!

 \circ Uncertainties due to detection of burnt area, FRP, emission factors, biome types, fuel consumption + difficulty to account for understory fires, peatland fires \rightarrow hampers our understanding of fire impacts

Factor of ~4
 between
 global bottom up estimates,
 larger
 differences at
 regional scale

BB datasets	Relies on
GFED4s	MODIS burnt area + active fires
FINN	MODIS active fire counts + active fires
GFAS	Assimilated MODIS FRP
FEER	As in GFAS, constrained by MODIS AOD
QFED	MODIS FRP + AOD
SEEDS	Top-down, based on HCHO data

Is satellite HCHO an alternative way to constrain biomass burning emissions?

 Inventories perform differently depending on species, season, location

Emission enhancements: average May-September

Top-down emissions during an extreme event

- Top-down emissions are lower than all inventories
- The peak on 6 Aug is well captured in all datasets, except for GFED
- The top-down
 peak is x2-3 lower
 than QFED/GFAS,
 could be due to
 the export of
 pollution due to
 strong winds

Underestimated cropland burning in Ukraine/Russia

- ✓ ~Half of Ukraine is cultivated area,
 70% of land is dedicated to agricultural use
- ✓ Due to the small size of cropland fires, satellite burnt area is often underestimated
- ✓ SEEDS estimates are factor of 1.5-2 higher on average than QFED, GFAS estimates are the lowest

Oomen et al. 2024

Crop residue burning in Ukraine

The share of top-down crop residue burning in Ukraine accounts for half of the total flux estimate in the European domain; Increased wrt to the a priori

Ukraine/Russia fires	TgC (5-yr mean)
A priori (QFED)	5.9
GFED	3.7
GFAS	2.5
Top-down (SEEDS)	11.2

✓ Small fires are underrepresented in inventories, due to difficulties to map burnt area from satellites

Top-down products offer an alternative estimate consistent with chemical observations, independent of fire proxies

Biogenic BVOCs from the bottom-up perspective

- ✓ Natural emissions from vegetation are currently poorly constrained
- ✓ Large source of uncertainty in models

Figure 7. Comparison of isoprene global annual totals from CAMS-GLOB-BIOv3.1 (black), CAMS-GLOB-BIOv3.0 (red), CAMS-GLOB-BIOv1.2 (orange) and other available inventories within the 2000–2019 period.

...and from the satellite perspective

- OBVOCs: key drivers of tropospheric chemistry through their impacts on O_3 , aerosols, methane lifetime
- Tropical forests modulate anthropogenic climate change, by partially causing it through deforestation, by buffering it through the land carbon sink
- Scarce local measurements → large uncertainties in BVOC
- Satellite data can inform on the distribution and strength of anthropogenic & natural sources at an unprecedented spatial scale, combined with models and inverse techniques

Satellite NO₂ and HCHO data can inform about emission sources!

Significant emission changes!

Evaluation against CrIS isoprene columns

A priori spatial patterns are more contrasted than in the observations

Improved agreement with CrIS in the joint inversion (-33% → -10%), improved spatial distribution

Compared to the joint inversion, increased columns by 40%. This is due to lower NOx fluxes, lower OH levels and longer isoprene lifetimes in HCHO-only inversion

Inferred VOC emission fluxes on global scale using TROPOMI

1 2 3 4 5 6 7 8 9 10 15 20 30 40 50 60 80 100

Satellite-based trends

Clear evidence of a significant impact of climate variability over BVOC-dominated regions

Müller et al. 2024 Stavrakou et al. 2018

Other top-down approaches

from observed concentration changes assuming known transport and chemical changes

simulations with new observations; suited for real-time applications

Particle or trajectory modeling tracing plumes backward (sources) or forward (dispersion).

Take-home messages

- Use of satellite data to learn about emission sources and their evolution, and to interpret the observed long-term satellite trends
- TROPOMI HCHO suggest increased fire fluxes from crop residue burning wrt bottom-up inventories and changes in spatial distribution of biogenic sources → geostationary observations offer promise to better determine these emissions
- Co-occurrence of sources (fires and enhanced vegetation emissions) during summertime makes it challenging to separate the sources
- Need for improved representation of pyrogenic and biogenic VOCs in models
- Inverse methods allow for a large array of applications & improved assessments of air quality (compounded by independent ground/satellite observations)