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1. Data Assimilation Methodology
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Monitoring • NWP definition: Combining data and model in an ‘optimal’ way to 

produce the best possible initial conditions for a numerical forecast

• Optimal in a statistical sense: minimize error and/or maximize 
probability of the analysis being correct

• CAMS uses ECMWF’s 4-dimensional variational data assimilation 
system or 4D-Var

• For AQ other parameters than

IC might be of interest

V a r i a t i o n a l  D a t a  a s s i m i l a t i o n
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C o s t  f u n c t i o n

𝐽 𝑥 = 𝑥 − 𝑥𝑏
𝑇𝐵−1 𝑥 − 𝑥𝑏 +෍

𝑖=0

𝑛

𝑦𝑖 − 𝐻𝑖 𝑥𝑖
𝑇𝑅𝑖

−1(𝑦𝑖 − 𝐻𝑖 𝑥𝑖 )

Data assimilation for atmospheric composition is in principle no different from NWP 
data assimilation

Cost function Background term Observation term

Jb Jo

x: control vector
xb: model background (short forecast)
B: Background error covariance matrix
y: Observations
H[x]: Model equivalent of observations
R: Observation error covariance matrix

• Strong constraint 4D-Var assumes perfect 
model over assimilation period

• Weak constrained 4D-Var includes a model 
error term

Analysis: x that minimizes cost function
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D a t a  a s s i m i l a t i o n  m e t h o d o l o g y

𝐽 𝑥 = 𝑥 − 𝑥𝑏
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𝑦𝑖 − 𝐻𝑖 𝑥𝑖
𝑇𝑅𝑖

−1(𝑦𝑖 − 𝐻𝑖 𝑥𝑖 )

Data assimilation for atmospheric composition is in principle no different from NWP 
data assimilation
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D a t a  a s s i m i l a t i o n  m e t h o d o l o g y
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Data assimilation for atmospheric composition is in principle no different from NWP 
data assimilation
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specific humidity
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GHG module

Chemical 
module
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module

Chemical Module

TM5 (CB05)
57 species, 131 reactions

Photolysis, dry and wet deposition

IFS
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D a t a  a s s i m i l a t i o n  m e t h o d o l o g y
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Data assimilation for atmospheric composition is in principle no different from NWP 
data assimilation
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surface pressure (logarithm)
specific humidity

Atmospheric Composition

ozone
carbon monoxide
nitrogen dioxide

formaldehyde
sulphur dioxide

carbon dioxide
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GHG module

Chemical 
module

Aerosol 
module

IFS

Greenhouse Gas Module

CHTESSEL
Photosynthesis & ecosystem respiration model

Diagnoses the gross primary production of CO2 by 
plants and release of CO2 by soil

CH4 comes from prescribed emissions and 
climatological loss
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D a t a  a s s i m i l a t i o n  m e t h o d o l o g y
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Data assimilation for atmospheric composition is in principle no different from NWP 
data assimilation
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Chemical 
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Aerosol 
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IFS

Aerosol bin scheme

14 aerosol-related prognostic variables:
3 bins sea-salt, 3 bins dust, Black carbon, Organic 

matter, Sulphate,
2 bins Nitrate, Ammonium

Emissions, dry and wet deposition, sedimentation
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I n c r e m e n t a l  4 D - V a r

Min 1
T95

Min 2
T159

Final Trajectory
T511

Outer loops
• Full non-linear NWP model
• Full atmospheric 

composition models
• Full set of atmospheric 

composition variables

Tangent Linear and 
Adjoint of observation 

operators

Inner loops
• Tangent linear NWP model linearised

around outer-loop trajectory
• No atmospheric composition model
• TL/AD of simple NO2 chemistry now 

implemented
• Limited set of atmospheric 

composition variables treated as 
tracers

Min J 𝛻𝛅𝐱0𝐽 = 𝐁−1 δ𝑥0 +σ𝑖=0
𝑛 𝑴′𝑇𝑯𝑖

𝑇𝑹𝑖
−1 𝑯𝑖𝑴′𝑖[δ𝑥0] − 𝑑𝑖 = 0 

Tangent linearAdjointWe calculate the 
gradient of the cost 
function to find its 
minimum

di=yi – Hixb(ti)

Full model



2. Emission Inversion
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I n i t i a l  c o n d i t i o n  v s  b o u n d a r y  p r o b l e m

• NWP 4D-Var is mostly defined as an initial value problem. Only initial conditions 
are changed and model error is relatively small.

• AC modelling depends on initial state and surface fluxes 

• Large part of chemical system not sensitive to initial conditions because of 
chemical equilibrium, but dependent on other parameters (e.g. emissions, 
deposition, reaction rates, …) which all might have errors
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• Large positive increments from OMI NO2 assim
• Large differences between analyses of ASSIM and CTRL
• Impact is lost during subsequent 12h forecast
• Constraining emissions (in addition of IC) would give a better initial state and persistence of 

forecast improvements throughout the DA window 

S h o r t - l i v e d  m e m o r y  o f  N O 2  a s s i m i l a t i o n

JF 
2008

JJA 
2008

OMI NO2 analysis increment [%]

Inness et al. (2015, ACP)

Differences between
Assim and CTRL (JF 2008)

[1015 molec/cm2]

Difference between 12h 
forecasts from ASSIM 
and CTRL (JF 2008)
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E x a m p l e s  o f  e m i s s i o n s

Biomass burning, 15 October 2017

TNO European anthropogenic NOx emissions CO2 fluxes

Volcanic SO2

CAMS_GLOB anthropogenic emissions

CAMS_GLOB biogenic CO emissions
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Monitoring • Emissions are one of the major uncertainties in composition modeling 

(can not be measured directly)

• The compilation of emissions inventories is a labour-intensive task based 
on a wide variety of socio-economic and land use data

• Some emissions can be “modeled” based on wind (dust and sea salt 
aerosol) or temperature (biogenic emissions)

• Some emissions can be observed indirectly from satellites instruments 
(Fire radiative power, burnt area, volcanic plumes)

• Trends are applied to inventories from previous years to produce future 
emission datasets 

• “Inverse” methods can be used to correct prior emission estimates using 
observations of concentrations and models

E m i s s i o n s



Atmosphere
Monitoring

J o i n t  s t a t e / e m i s s i o n s  4 D - v a r  i n v e r s i o n  s y s t e m

𝐽 𝑥, 𝑝 = 𝑥 − 𝑥𝑏
𝑇𝐵−1 𝑥 − 𝑥𝑏 + 𝑝 − 𝑝𝑏

𝑇𝐵𝑝
−1 𝑝 − 𝑝𝑏

+    σ𝑖=0
𝑛 𝑦𝑖 − 𝐻𝑖 𝑥𝑖 , 𝑝

𝑇𝑅𝑖
−1(𝑦𝑖 − 𝐻𝑖 𝑥𝑖 , 𝑝 )

Jb: background constraint for x Jp: constraint for emission scaling factors 

Jo:  observation constraint

• Joint optimisation of emissions and initial conditions
• Optimized emissions e.g. CO2, CH4, CO & NO2
• TL/AD of simplified chemistry: link between NO emissions and NO2 observations
• 2D scaling factors p applied to emission fields
• Prior error definition:

• Global constant or 2D map of standard error
• Spatial correlation length scale (via Bp)
• NO/CO2 emission error correlation in Bp -> NO2 obs can contrain CO2 emissions

Parameter (e.g. scaling factors)State control 
vector

Credit: Nicolas Bousserez
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I m p a c t  o f  C o v i d  l o c k d o w n  o n  U S  a n t h r o p o g e n i c  
e m i s s i o n s  

 Differences between 
posterior emissions May 
2020 – May 2019 show 
impact of covid lockdown

 Based on CAMS 
operational emissions in 
the prior and a fixed prior 
uncertainty of 40%. 

 10-20% reduction 
consistent with previous 
studies (e.g., Keller et al. 
(2020); Liu et al. (2020))

 Provided uncertainties in 
NO/CO2 emission ratios 
are accounted for, top-
down NO2 estimates 
could help quantify CO2

emissions variability

NOx emission changes (%) between May 2020 and May 2019

Based on OMI NO2 observations

-20                   -10                    0                     10                 20 Credit: Nicolas Bousserez



3. Potential issues when 
assimilating satellite data
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B i a s e s  a n d  B i a s  c o r r e c t i o n

• 4D-Var assumes that errors are unbiased and gaussian
• Biases in the input [y – h(x)] can arise from:

 errors in the actual observations 
 errors in the model background 
 errors in the observation operator

• Often no true reference in the real world
• Need an adequate bias model to correct for this

 Correct observation biases before use
 Adaptive bias correction system (better for complex and 

changing observation system)

𝐽 𝑥 = 𝑥 − 𝑥𝑏
𝑇𝐵−1 𝑥 − 𝑥𝑏 +෍

𝑖=0

𝑛

𝑦𝑖 − 𝐻𝑖 𝑥𝑖
𝑇𝑅𝑖

−1(𝑦𝑖 − 𝐻𝑖 𝑥𝑖 )

Background constraint Observation constraint
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V a r i a t i o n a l  b i a s  c o r r e c t i o n  s c h e m e

𝐉(𝐱, 𝛃) = (𝐱 − 𝐱b)
𝐓𝐁𝐱

−𝟏(𝐱 − 𝐱b) + (𝛃𝐛 − 𝛃)𝐓𝐁𝛃
−𝟏(𝛃𝐛 − 𝛃)

+ 𝐲 − 𝐛𝐨(𝐱, 𝛃) − 𝐡(𝐱) 𝐓𝐑−𝟏 𝐲 − 𝐛𝐨(𝐱, 𝛃) − 𝐡(𝐱)

Jb: background constraint for x J: background constraint for bias 

Jo: bias-corrected observation constraint

𝐽 𝑥 = 𝑥 − 𝑥𝑏
𝑇𝐵−1 𝑥 − 𝑥𝑏 +෍

𝑖=0

𝑛

𝑦𝑖 − 𝐻𝑖 𝑥𝑖
𝑇𝑅𝑖

−1(𝑦𝑖 − 𝐻𝑖 𝑥𝑖 )

Background constraint Observation constraint

The original problem:

The modified problem:
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E x a m p l e s  o f  v a r i a t i o n a l  b i a s  c o r r e c t i o n

Variational bias correction: 
• Spins up 
• Adjusts to changes in model or data
• Removes biases

200 hPa temperature departures from radiosonde observations

NOAA-9 MSU channel 3 bias corrections (cosmic storm)
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O b s e r v a t i o n  o p e r a t o r s :  M a p p i n g  m o d e l  a n d  o b s

Observation operator H maps model state at beginning of the 
assimilation window (t=0) to the observation time and location

Direct assimilation of radiance observations: 
The observation operator must incorporate 
an additional step to compute radiances 
from the model state variables (radiative 
transfer model, e.g.  RTTOV)

CAMS hopes to explore this in the future

Assimilation of retrievals:
Good characterization of retrieval is crucial:
• Averaging kernels
• A priori
• Error estimates
• Quality flags

෍

𝑖=0

𝑛

𝑦𝑖 − 𝐻𝑖 𝑀𝑖(𝑥0)
𝑇𝑅𝑖

−1(𝑦𝑖 − 𝐻𝑖 𝑀𝑖(𝑥0) )
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A s s i m i l a t i n g  r e t r i e v a l s :  C o l u m n  r e t r i e v a l  

We can make use of the averaging kernel A in the observation operator

𝑑 = 𝑦 ̂ − 𝐻(𝐱𝑚) = 𝐲𝑎 + 𝐀(𝐲 − 𝐲𝑎) + 𝜀 − 𝐻(𝐱𝑚)

𝑑 = 𝑦 ̂ − ෡𝐻(𝐱𝑚) = 𝐲𝑎 + 𝐀(𝐲 − 𝐲𝑎) + 𝜀 − (𝐲𝑎 + 𝐀(𝐻(𝐱𝑚) − 𝐲𝑎))

= 𝐀(𝐲 − 𝐻(𝐱𝑚)) + 𝜀

Without averaging kernels 
in observation operator (e.g. 
simple vertical integral)

With averaging kernels in 
observation operator

• We remove the influence of the a-priori profile if we use the averaging kernel to sample 
the model profile according to the assumptions made in the retrieval.

• The model data is smoothed by the averaging kernel to produce a profile that is directly 
comparable to the product derived from the instrument radiances

• We still need to know ya and A in the observation operator calculations

ොy = ya+𝐀 y − ya + 𝜀 Retrieved value: true state y smoothed by the averaging kernel 𝐀; 
ya: a-priori, ε: retrieval error 
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E x a m p l e s  o f  t o t a l  c o l u m n  C O  a v e r a g i n g  k e r n e l s

Martínez-Alonso et al. (2020, AMT)

MOPITT

TROPOMI
Mid-level cloud
clear

TROPOMI & MOPITT AKs

day night

MOPITT AKs

• TIR retrievals give information about mid troposphere 
• Diurnal variations of Tsurf affect TIR retrieval over land
• CO near surface more detectable during day, AKs shift downwards 
• Diurnal variability of AKs largest over e.g. deserts, smallest over sea

Deeter et al. (2003, JGR)

• TROPOMI has sensitivity to the CO column
• Clear TROPOMI data have some sensitivity 

to lower troposphere and PBL
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I m p a c t  o f  T R O P O M I  C O  r e t r i e v a l s  i n  D A

Increment from single obs

TCCO obs=4.3 1018 molec/cm2

Obs error=10%  

• Impact of TCCO data depends on 
averaging kernels

• Clear-sky TROPOMI observations 
have more impact in lower 
troposphere than cloudy 
observations

• Important to use AKs in observation 
operator

Cloudy

Clear

CO in ppb
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E x a m p l e  o f  s a t e l l i t e  o b s e r v a t i o n  c o v e r a g e

Global coverage in 
a few days (LEO) –

fixed overpass time

Often limited 
to cloud free 
conditions

Total or 
tropospheric 

columns

CO: TROPOMI, MOPITT, IASI O3: TROPOMI, GOME-2,OMI,SBUV,OMPS,MLS

NO2: TROPOMI, GOME-2,OMI SO2: TROPOMI, GOME-2,OMI

Fixed overpass times and daylight conditions 
only (UV-VIS) -> no daily maximum/cycle

12-hour
analysis 
cycle
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L i m i t e d  i n f o r m a t i o n  c o n t e n t :  T o t a l  c o l u m n

Increment created by a single 

ozone observation of 375 DU, 

10 DU higher than background

Horizontal correlation 

from the B-matrix that 

spreads the information 

from the single 

observation in the 

horizontal

Increment from one TC ozone retrieval
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I n c r e m e n t  f r o m  o n e  T C  o z o n e  r e t r i e v a l

Increment created by a single 

ozone observation of 375 DU, 

10 DU higher than background

Vertical profile of the 

increment at the observation 

location

Standard deviation from the 

background matrix at the 

observation location

Background matrix has a 

significant impact on the 

distribution of information

Formulation of the B-matrix is very important for AC
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A n  e x t r e m e  e x a m p l e :  O z o n e  7  O c t o b e r  2 0 0 4

GEMS reanalysis CAMS reanalysis

[DU]

• Similar TCO3 analysis from (old) GEMS reanalysis and CAMS reanalysis 
• Huge differences between corresponding O3 profiles
• No profile data (MIPAS, MLS) were assimilated in GEMSRA in Oct 2004 and 

model had a large O3 bias leading to very bad vertical O3 analysis profiles
• Shows importance of using limb sounding data for O3 analysis

Sonde launched by AWI
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– 3 size bins each for sea-salt and desert dust

– 2 bins (hydrophilic and hydrophobic) each for organic matter and black carbon

– 1 bin for sulphate

– 2 bins (fine and coarse) for nitrate 

– 1 bin for ammonium 

• Assimilated observations are AOD at 550 nm from MODIS (Aqua and Terra) over 
land and ocean & PMAp (Metop-BC) over ocean

• Assimilation tests with VIIRS and SLSTR AOD

• Control variable is formulated in terms of the total aerosol mixing ratio.

• Analysis  increments are repartitioned into the species according to their 
fractional contribution to the total aerosol mixing ratio.

• The repartitioning of the total aerosol mixing ratio increment into the different 
bins is difficult

A e r o s o l  a n a l y s i s  
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D u s t  s t o r m  F e b r u a r y  2 0 2 1

NASA Worldview – MODIS Aqua and Terra AOD 550nm 
observations for 20210222 

CAMS Total AOD at 550nm 12hr forecast valid 
at 20210222 12hr

The CAMS forecast does a good job of 
forecasting the AOD plume from Africa 
over Northern Europe

Credit: Melanie Ades
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D u s t  t e s t  c a s e  F e b r u a r y  2 0 2 1

Total AOD at 550nm: 20210222 03hr

AOD at 
550nm

AOD incr
at 550nm

Dust SulphateCloser examination shows that some of this 
total AOD can be attributed to Sulphate, 
rather than Dust

• AOD increments are attributed to the 
different species according to their 
proportion in the nonlinear forecast. 

• If there is no dust in the forecast in a 
specific location then the increment will 
be given to whatever species are there –
in this case Sulphate

Increments

Credit: Melanie Ades
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D u s t  t e s t  c a s e  F e b r u a r y  2 0 2 1

AOD at 
550nm

AOD incr
at 550nm

Dust Sulphate

With specific additional Dust observations, the 
Dust can be increased in the relevant locations 
which will improve the spurious increments of 

other species

LMD IASI 10um obs 20210222 12hr

Credit: Melanie Ades
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Monitoring • Volcanic eruptions put ash and SO2 into the atmosphere 

• Altitudes of volcanic plumes and emission strengths vary

• CAMS uses SO2 outgassing emissions but has no emission data set 
providing information about volcanic eruptions in NRT

• How can CAMS provide SO2 forecasts?

S O 2  a s s i m i l a t i o n

CALIPSO

Credit: NASA
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C u r r e n t  u s e  o f  S O 2  d a t a  i n  C A M S  N R T  s y s t e m

• CAMS assimilates GOME-2BC and TROPOMI total column SO2 TCSO2 
retrievals making use of the volcanic flags provided by data providers 
(AC-SAF, ESA; algorithm from DLR)
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C u r r e n t  u s e  o f  S O 2  d a t a  i n  C A M S  N R T  s y s t e m

• CAMS assimilates GOME-2BC and TROPOMI total column SO2 TCSO2 
retrievals making use of the volcanic flags provided by data providers 
(AC-SAF, ESA; algorithm from DLR)

• We need to make assumptions about the 
plume height if this is not known in NRT

• Default: SO2 is placed in mid-troposphere at 
model level 98 (~ 550 hPa, 5 km) by using a 
prescribed bg-error stdv profile

• This can be modified if injection height is 
known

• Currently: Globally constant injection height
• ‘Baseline configuration: BLexp’
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C u r r e n t  u s e  o f  S O 2  d a t a  i n  C A M S  N R T  s y s t e m

• CAMS assimilates GOME-2BC and TROPOMI total column SO2 TCSO2 
retrievals making use of the volcanic flags provided by data providers 
(AC-SAF, ESA; algorithm from DLR)

• We need to make assumptions about the 
plume height if this is not known in NRT

• Default: SO2 is placed in mid-troposphere at 
model level 98 (~ 550 hPa, 5 km) by using a 
prescribed bg-error stdv profile

• This can be modified if injection height is 
known

• Currently: Globally constant injection height
• ‘Baseline configuration: BLexp’

SO2 background error 
standard deviation

CAMS profile
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Monitoring • DLR have developed algorithm to provide information about the plume 

height in NRT from TROPOMI  (Hedelt et al., 2019, doi.org/10.5194/amt-
12-5503-2019)

• Full-Physics Inverse Learning Machine (FP_ILM) algorithm

• SO2 LH project - one of ESA’s S5P Innovation projects

• Data useful for SO2 > 20 DU

• CAMS is testing the use of these data: ‘LHexp’

• Inness et al. (2022): https://doi.org/10.5194/gmd-15-971-2022

U s e  o f  S O 2  L a y e r  H e i g h t  d a t a  b y  C A M S

SO2 Layer height project
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• SO2 and ash injected up to 13-17 km -> into stratosphere

• SO2 plumes could be observed from space for a long time in NH

• Compare BLexp and LHexp

C a s e  S t u d y :  R a i k o k e e r u p t i o n  J u n e  2 0 1 9

22 June 10 July

TROPOMI SO2

DU DU
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H e i g h t  o f  S O 2  p l u m e  f r o m  S 5 P  L H  d a t a

Raikoke eruption
22 June -21 July 2019

Default of placing the SO2 
signal around 550 hPa is 
clearly wrong in this case
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C o m p a r i s o n  o f  C A M S  p l u m e  h e i g h t  w i t h  I A S I

Plot provided by MariLiza Koukouli IASI SO2 altitude retrieval from LATMOS/ULB

CAMS SO2 analysis shows 
improved agreement with IASI 
LATMOS/ULB SO2 altitude data 
if TROPOMI SO2 LH data are 
used

Period:
22 -29 June 2019

-

Biases against IASI:
BL exp: -5.1 ± 2.1 km
LH exp:  0.4 ± 2.2 km

Using the LH data leads to 
improved SO2 analyses and 
SO2 forecasts

Inness et al. (2022): doi.org/10.5194/gmd-15-971-2022
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H u n g a T o n g a  e r u p t i o n  J a n u a r y  2 0 2 2

• Eruption of Hunga Tonga-Hunga Ha‘apai volcano in January 
2022 caused atmospheric shock waves, sonic booms, and 
tsunami waves

• It injected SO2, ash and water vapour into the stratosphere

Credits: NASA’s Goddard Space Flight Center/Mary Pat Hrybyk-Keith

Hunga Tonga eruption

Over Indian Ocean

source Simon Carn on twitter: 
https://twitter.com/simoncarn/status/1484527916960595973?s=20)

CALIPSO 19 January 2022

https://twitter.com/simoncarn/status/1484527916960595973?s=20
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B e g i n n i n g  o f  e r u p t i o n  1 4  J a n u a r y  2 0 2 2 ,  0 z

Assimilated TROPOMI SO2 data

CAMS SO2 analysis

Cross section through 
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IASI plume altitude
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A n i m a t i o n  o f  C A M S  S O 2  a n a l y s i s

CAMS TCSO2 CAMS sulphate aerosol

• Assimilation brings the volcanic SO2 signal into the analysis
• SO2 is converted to sulphate aerosols
• Initial plume is advected south-eastwards because SO2 is placed too low, i.e. in the 

mid-troposphere
• On subsequent days the plume is moved further westwards by adjusting initial 

conditions (while still at the wrong altitude)

Credit: Mark Parrington



4. Reanalysis
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N e a r - r e a l  t i m e  m o d e l  v e r s u s  r e a n a l y s i s

CAMS Reanalysis
NRT CAMS analysis

good

bad

Ozone score

Reanalysis (retrospective):
• Consistent long term dataset produced with 

one model version (from 2003 onwards)
• Consistent emissions
• Consistent, reprocessed observations
• Can be used for trend analysis

NRT global CAMS system (daily analyses and 
5-day forecasts):
• Evolves with time: Usually 1-2 model updates 

per year
• Horizontal and vertical resolution can change
• Observation usage changes
• Emission data sets might change
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GLOBAL SCALEC A M S  g l o b a l  re a n a l y s i s 2 0 0 3  – 2 0 2 1 ( u p d a te d  e v e r y  6  m o n t h s )

CAMS global reanalysis (CAMSRA, eac4) 
• 2003 –2021, with new years being added
• Aerosols, chemical pollutants, CO2 & CH4

• 80 km spatial resolution
• Inness et al. (2019): https://doi.org/10.5194/acp-19-3515-2019
• Wagner et al. (2021):  https://doi.org/10.1525/elementa.2020.00171
• atmosphere.copernicus.eu/eqa-reports-global-services
• Available from ADS https://atmosphere.copernicus.eu/data

• CB05 tropospheric 
chemistry

• Cariolle-Déqué scheme for 
stratospheric ozone

• Interactive prognostic O3 
and AER

https://doi.org/10.5194/acp-19-3515-2019
https://atmosphere.copernicus.eu/data
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U s e  E A C 4  t o  s t u d y  C O  t r e n d s

CO burdens

Comparison of xCO with TCCON at Parkfalls

Flemming et al. (2020), BAMS State of Climate 2019

TCCON data from:
https://tccondata.org/

Globe Arctic
TCCO Anomaly 2021

Flemming and Inness (2022), 
BAMS State of Climate 2021
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A n t a r c t i c  O c t o b e r  T C O 3  t r e n d s

Linear trends calculated for periods 1979-1996, 1997-2020

WMO (2018)

CCI merged data set and Multi Sensor Reanalysis from: 
cds.climate.copernicus.eu

1979-2016 1979-2016 1979-2020

• Good agreement
• Trend depends on turnaround year 

and length of dataset

ERA5 (1979-2002) & CAMSRA (2003 ->   )
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A n t a r c t i c  o z o n e  h o l e  2 0 1 9 ,  2 0 2 0  &  2 0 2 1

• 2019 and 2020 both had exceptional Antarctic 
ozone holes

• 2019 small and short-lived because of unusual 
stratospheric warming

• 2020 deep, big & long-lived due to very cold 
stratosphere and stable polar vortex

• 2021 very similar to 2020

In addition to long-term O3 recovery there is a lot of interannual variability

(1979-2002 from ERA5; 2003-2020 from CAMSRA; 2021 CAMS NRT)
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O 3  h o l e  2 0 2 2

• 2022 is another big and deep ozone hole
• It will be interesting to see how it evolves

[DU]

28 Sep 
2022
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inversion
• Examples of challenges or limitations when assimilating atmospheric 

composition observations
– Bias correction
– Observation operators and application of averaging kernels
– Issues when assimilating total column observations
– Aerosol assimilation
– SO2 assimilation

• Reanalysis and examples of data usage, e.g. trends, Antarctic Ozone hole

• CAMS provides atmospheric composition data at global and European 
regional scale

• CAMS data freely available from ADS  https://atmosphere.copernicus.eu/data

S u m m a r y
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T h e  A t m o s p h e r e  D a t a  S t o r e  ( A D S )

https://atmosphere.copernicus.eu/dataAll CAMS data are freely available

http://atmosphere.copernicus.eu     |     @CopernicusECMWF |    @CopernicusEU


